Rahul Science Academy

RANKERS

JJT Jee Neet

CIRCLE

Problem 1

A circle touching the x- axis at (3, 0) and making an intercept of length 8 on the y- axis passes through the point [JEE (Main) 2019]

- (a) (2, 3)
- (b) (3, 10)
- (c) (1, 5)
- (d) (3, 5)

Problem 2

The number of common tangents to the circles $x^2 + y^2 = 4$ and $x^2 + y^2 - 6x - 8y + 24 = 0$ is **[EAMCET 1990**;

IIT 1998; Odisha JEE 2005; KCET 2007, 11]

- (a) 3
- (b) 4
- (c) 2
- (d) 1

Problem 3

The point of contact of the tangent to the circle $x^2 + y^2 = 5$ at the point (1, -2) which touches the circle $x^2 + y^2 - 8x + 6y + 20 = 0$, is [Roorkee 1989]

- (a) (2, -1)
- (b) (3, -1)
- (c) (4, -1)
- (d) (5, -1)

Problem 4

If 2x-4y=9 and 6x-12y+7=0 are the tangents of same circle, then its radius will be **[Roorkee 1995; EAMCET 2003]**

- (a) $\frac{\sqrt{3}}{5}$
- (b) $\frac{17}{6\sqrt{5}}$
- (c) $\frac{2\sqrt{5}}{3}$
- (d) $\frac{17}{3\sqrt{5}}$

Problem 5

If two circles $(x-1)^2 + (y-3)^2 = r^2$ and $x^2 + y^2 - 8x + 2y + 8 = 0$ intersect in two distinct points, then [IIT 1989; IIT Screening 1994; DCE 2000, 01; KCET 2002;AIEEE 2003; MP PET 2004, 06; UPSEAT 2004; WB JEE 2009]

- (a) 2 < r < 8
- (b) r = 2
- (c) r < 2
- (d) r > 2

Problem 6

For the two circles $x^2 + y^2 = 16$ and $x^2 + y^2 - 2y = 0$ there is/are [JEE (Main) 2014]

- (a) One pair of common tangents
- (b) Two pairs of common tangents
- (c) Three common tangents
- (d) No common tangent

Problem 7

Two tangents PQ and PR drawn to the circle $x^2 + y^2 - 2x - 4y - 20 = 0$ from point P(16,7). If the centre of the circle is C, then the area of quadrilateral PQCR will be [IIT 1981; MP PET 1994]

- (a) 75 sq. units
- (b) 150 sq. units
- (c) 15 sq. units
- (d) None of these

Problem 8

Tangents drawn from the point P(1,8) to the circle $x^2 + y^2 - 6x - 4y - 11 = 0$ touch the circle at the points A and B. The equation of the circumcircle of the triangle PAB is

[IIT JEE 2009]

(a)
$$x^2 + y^2 + 4x - 6y + 19 = 0$$

(b)
$$x^2 + y^2 - 4x - 10y + 19 = 0$$

(c)
$$x^2 + y^2 - 2x + 6y - 29 = 0$$

(d)
$$x^2 + y^2 - 6x - 4y + 19 = 0$$

Problem 9

A tangent to the circle $x^2 + y^2 = 5$ at the point (1,-2)..... the circle $x^2 + y^2 - 8x + 6y + 20 = 0$ [IIT 1975]

- (a) Touches
- (b) Cuts at real points
- (c) Cuts at imaginary points (d) None of these

Problem 10

Equation of the tangent to the circle, at the point (1,-1), where centre is the point of intersection of the straight lines x-y=1 and 2x+y=3 is [JEE (Main) 2016]

- (a) x + 4y + 3 = 0
- (b) 3x y 4 = 0
- (c) x 3y 4 = 0
- (d) 4x + y 3 = 0

Problem 11

If a > 2b > 0 then the positive value of m for which $y = mx - b\sqrt{1 + m^2}$ is a common tangent to $x^2 + y^2 = b^2$ and $(x - a)^2 + y^2 = b^2$, is [IIT Screening 2002]

(a)
$$\frac{2b}{\sqrt{a^2 - 4b^2}}$$

(b)
$$\frac{\sqrt{a^2 - 4b^2}}{2b}$$

(c)
$$\frac{2b}{a-2b}$$

(d)
$$\frac{b}{a-2b}$$

Problem 12

A circle touches the x-axis and also touches the circle with centre at (0, 3) and radius 2. The locus of the centre of the circle is [AIEEE 2005]

- (a) A hyperbola
- (b) A parabola
- (c) An ellipse
- (d) A circle

Problem 13

The length of the diameter of the circle which touches x-axis at the point (1,0) and passes through the point (2,3)

(AIFFF 200

(a)
$$\frac{10}{3}$$

(b)
$$\frac{3}{5}$$

(c)
$$\frac{6}{5}$$

(d)
$$\frac{5}{3}$$

Problem 14

IIT 85

The tangents are drawn from the point (4, 5) to the circle $x^2 + y^2 - 4x - 2y - 11 = 0$. The area of quadrilateral formed by these tangents and radii, is **[IIT 1985]**

- (a) 15 sq. units
- (b) 75 sq. units
- (c) 8 sq. units
- (d) 4 sq. units

Problem 15

Let PQ and RS be tangents at the extremities of the diameter PR of a circle of radius r. If PS and RQ intersect at a point X on the circumference of the circle, then 2r equals

[IIT Screening 2001]

(a)
$$\sqrt{PQ \cdot RS}$$

(b)
$$\frac{PQ + RS}{2}$$

(c)
$$\frac{2PQ \cdot RS}{PQ + RS}$$

(d)
$$\sqrt{\frac{PQ^2 + RS^2}{2}}$$

Problem 16

The number of common tangents to the circles $x^2 + y^2 - 4x - 6y - 12 = 0$ and

$$x^2 + y^2 + 6x + 18y + 26 = 0$$
, is

[JEE (Main) 2015]

- (a) 1
- (b) 2
- (c) 3
- (d) 4

Problem 17

If the tangent at the point P on the circle $x^2+y^2+6x+6y=2$ meets the straight line 5x-2y+6=0 at a point Q on the y- axis, then the length of PQ is **[IIIT Screening 2002]**

- (a) 4
- (b) 2√5
- (c) 5
- (d) 3√5

Problem 18

If a tangent to the circle $x^2 + y^2 = 1$ intersects the coordinate axes at distinct points P and Q, then the locus of the mid-point of PQ is [JEE (Main) 2019]

- (a) $x^2 + y^2 4x^2y^2 = 0$
- (b) $x^2 + y^2 16x^2y^2 = 0$
- (c) $x^2 + y^2 2x^2y^2 = 0$
- (d) $x^2 + y^2 2xy = 0$

चलो अभ्यास करते हैं