IIT JEE / NEET / CET Classes

Address: Balewadi High Street, Pune Contact: 7020329384 / 7588305622 Email: share.me650@gmail.com

PHYSICS

(01)

SYLLABUS: Fundamental of Vectors, Addition, Subtraction and Multiplication of Vectors, Lami's Theorem

Date	:				
		-	_		_

- 1. A force of 5 N acts on a particle along a direction making an angle of 60° with vertical. Its vertical component will be
 - (a) 10 N
- (b) 3 N
- (c) 4 N
- (d) 2.5 N
- 2. Which of the following statement is true
 - (a) When the coordinate axis are translated the component of a vector in a plane changes
 - (b) When the coordinate axis are rotated through some angle, components of the vector change but the vector's magnitude remains constant
 - (c) Sum of \vec{a} and \vec{b} is \vec{R} . If the magnitude of \vec{a} alone is increased angle between \vec{b} and \vec{R} decreases
 - (d) The cross product of 3i and 4j is 12
- The X and Y components of a force F acting at 3. 30° to x-axis are respectively
- (b) $\frac{F}{2}, \frac{\sqrt{3}}{2}F$
- (c) $\frac{\sqrt{3}}{2}F, \frac{1}{2}F$ (d) $F, \frac{F}{\sqrt{2}}$

- $0.4\hat{i} + 0.8\hat{j} + c\hat{k}$ represents a unit vector when c is
 - (a) 0.2
- (b) $\sqrt{0.2}$
- (c) $\sqrt{0.8}$
- (d) 0
- With respect to a rectangular cartesian coordinate system, three vectors are expressed as

$$\vec{a} = 4\hat{i} - \hat{j}$$
, $\vec{b} = -3\hat{i} + 2\hat{j}$ and $\vec{c} = -\hat{k}$

where \hat{i} , \hat{j} , \hat{k} are unit vectors, along the X, Y and Z-axis respectively. The unit vectors \hat{r} along the direction of sum of these vectors is

- (a) $\hat{r} = \frac{1}{\sqrt{2}}(\hat{i} + \hat{j} \hat{k})$ (b) $\hat{r} = \frac{1}{\sqrt{2}}(\hat{i} + \hat{j} \hat{k})$
- (c) $\hat{r} = \frac{1}{3}(\hat{i} \hat{j} + \hat{k})$ (d) $\hat{r} = \frac{1}{\sqrt{2}}(\hat{i} + \hat{j} + \hat{k})$
- Two vectors are given by $\vec{A} = \hat{i} + 2\hat{j} + 2\hat{k}$ and 6. $\vec{B} = 3\hat{i} + 6\hat{j} + 2\hat{k}$. Another vector \vec{C} has the same magnitude as \vec{B} but has the same direction as \vec{A} . Then which of the following vectors represent \bar{C}

 - (a) $\frac{7}{3}(\hat{i}+2\hat{j}+2\hat{k})$ (b) $\frac{3}{7}(\hat{i}-2\hat{j}+2\hat{k})$
 - (c) $\frac{7}{9}(\hat{i}-2\hat{j}+2\hat{k})$ (d) $\frac{9}{7}(\hat{i}+2\hat{j}+2\hat{k})$

RESPONSE GRID

1. @ b c d 2. @ b c d 3. @ b c d 4. @ b c d 5. @ b c d

6. abcd

- If $\vec{A} = 2\hat{i} + 4\hat{j} 5\hat{k}$ the direction of cosines of the vector A are
 - (a) $\frac{2}{\sqrt{45}}$, $\frac{4}{\sqrt{45}}$ and $\frac{-5}{\sqrt{45}}$
 - (b) $\frac{1}{\sqrt{45}}$, $\frac{2}{\sqrt{45}}$ and $\frac{3}{\sqrt{45}}$
 - (c) $\frac{4}{\sqrt{45}}$, 0 and $\frac{4}{\sqrt{45}}$
 - (d) $\frac{3}{\sqrt{45}}$, $\frac{2}{\sqrt{45}}$ and $\frac{5}{\sqrt{45}}$
- 8. Two persons A and B are located in x-y plane at the points (0, 0) and (0, 10), respectively. (The distances are measured in MKS units). At a time t=0, they start moving simultaneously with $\vec{v}_A = 2\hat{j} \, ms^{-1}$ and $\vec{v}_B = 2\hat{i} \text{ ms}^{-1}$ respectively. The time after which A and B are at their closest distance is
 - (a) $2.5 \, s$

(c) 1s

- 9. Following forces start acting on a particle at rest of the co-ordinate system at the origin simultaneously
 - $\vec{F}_1 = -4\hat{i} 5\hat{j} + 5\hat{k}, \vec{F}_2 = 5\hat{i} + 8\hat{j} + 6\hat{k},$
 - $\vec{F}_3 = -3\hat{i} + 4\hat{j} 7\hat{k}$ and $\vec{F}_4 = 2\hat{i} 3\hat{j} 2\hat{k}$ then the particle will move
 - (a) $\ln x y$ plane
- (b) In y z plane
- (c) In x z plane
- (d) Along x -axis
- 10. If $|\vec{A} \vec{B}| = |\vec{A}| = |\vec{B}|$, the angle between \vec{A} and \vec{B} is
 - (a) 60°
- (b) 0°
- (c) 120°
- (d) 90°

- 11. A certain vector in the x-y plane has an x-component of 12 m and a y-component of 8 m. It is then rotated in the x-y plane so that its x-component is halved. Then its new y-component is approximately
 - (a) 14 m
- (b) 13.11 m
- (c) 10 m
- (d) 2.0 m
- Three concurrent forces of the same magnitude are in equilibrium. What is the angle between the forces? Also name the triangle formed by the forces as sides
 - (a) 60° equilateral triangle
 - (b) 120° equilateral triangle
 - (c) 120°, 30°, 30° an isosceles triangle
 - (d) 120° an obtuse angled triangle
- Two forces, F_1 and F_2 are acting on a body. One force is double that of the other force and the resultant is equal to the greater force. Then the angle between the two forces is
 - (a) $\cos^{-1}(1/2)$
- (b) $\cos^{-1}(-1/2)$
- (c) $\cos^{-1}(-1/4)$
- (d) $\cos^{-1}(1/4)$
- **14.** At what angle must the two forces (x + y) and (x - y) act so that the resultant may be $\sqrt{(x^2 + y^2)}$
 - (a) $\cos^{-1}\left(-\frac{x^2+y^2}{2(x^2-y^2)}\right)$
 - (b) $\cos^{-1}\left(-\frac{2(x^2-y^2)}{x^2+y^2}\right)$
 - (c) $\cos^{-1}\left(-\frac{x^2+y^2}{x^2-y^2}\right)$
 - (d) $\cos^{-1}\left(-\frac{x^2-y^2}{x^2+y^2}\right)$

RESPONSE **GRID**

- 7. abcd
- 8. @ 6 6 6
- 9. a b c d 10. a b c d 11. a b c d

12. a b c d 13. a b c d 14. a b c d

- Two vectors A and B have equal magnitudes. If magnitude of $\vec{A} + \vec{B}$ is equal to n times the magnitude of $\bar{A} - \bar{B}$, then the angle between A and \vec{B} is

 - (a) $\cos^{-1}\left(\frac{n-1}{n+1}\right)$ (b) $\cos^{-1}\left(\frac{n^2-1}{n^2+1}\right)$

 - (c) $\sin^{-1}\left(\frac{n-1}{n+1}\right)$ (d) $\sin^{-1}\left(\frac{n^2-1}{n^2+1}\right)$
- 16. A particle acted upon by constant forces $4\hat{i} + \hat{j} - 3\hat{k}$ and $3\hat{i} + \hat{j} - \hat{k}$ is displaced from the point $\hat{i} + 2\hat{j} - 3\hat{k}$ to point $5\hat{i} + 4\hat{j} - \hat{k}$. The total work done by the forces in SI unit is
- (c) 50

- (d) 30
- 17. \vec{A} and \vec{B} are two vectors given by \vec{A} = and $\vec{B} = \hat{i} + \hat{j}$. The magnitude of the component of A along B is

- Which of the following is the unit vector perpendicular to \overrightarrow{A} and \overrightarrow{B}
 - (a) $\frac{\hat{A} \times \hat{B}}{AB \sin \theta}$
- (b) $\frac{\hat{A} \times \hat{B}}{AB\cos\theta}$
- (c) $\frac{\vec{A} \times \vec{B}}{AB \sin \theta}$

- 19. What is the unit vector perpendicular to the following vectors $2\hat{i} + 2\hat{j} - \hat{k}$ and $6\hat{i} - 3\hat{j} + 2\hat{k}$
 - (a) $\frac{\hat{i} + 10\hat{j} 18\hat{k}}{5\sqrt{17}}$
- (b) $\frac{\hat{i}-10\hat{j}+18\hat{k}}{5\sqrt{17}}$
- (c) $\frac{\hat{i} 10\hat{j} 18\hat{k}}{5\sqrt{17}}$ (d) $\frac{\hat{i} + 10\hat{j} + 18\hat{k}}{5\sqrt{17}}$
- **20.** The area of the triangle formed by $2\hat{i} + \hat{j} \hat{k}$ and
- (b) $2\sqrt{3}$ sq. unit
- (c) $2\sqrt{14}$ sq. unit
- (d) $\frac{\sqrt{14}}{2}$ sq. unit
- If $\vec{A} = 2\hat{i} + 3\hat{j} \hat{k}$ and $\vec{B} = -\hat{i} + 3\hat{j} + 4\hat{k}$ then the unit vector perpendicular to both \vec{A} and \vec{B} will
 - (a) $+\frac{1}{\sqrt{3}}(\hat{i}-\hat{j}-\hat{k})$ (b) $-\frac{1}{\sqrt{3}}(\hat{i}-\hat{j}-\hat{k})$
 - (c) Both (a) and (b)
- (d) None of these
- **22.** For any two vectors \vec{A} and \vec{B} , if $\vec{A} \cdot \vec{B} = |\vec{A} \times \vec{B}|$, the magnitude of $\vec{C} = \vec{A} + \vec{B}$ is equal to
 - (a) $\sqrt{A^2 + B^2}$
 - (b) A+B
 - (c) $\sqrt{A^2 + B^2 + \frac{AB}{\sqrt{2}}}$
 - (d) $\sqrt{A^2 + B^2 + \sqrt{2} \times AB}$

- 15. a b c d 16. a b c d 17. a b c d 18. a b c d 19. a b c d
 - 20. abcd 21. abcd 22. abcd

- 23. How many minimum number of non-zero vectors in different planes can be added to give zero resultant
 - (a) 2

(b) 3

(c) 4

- (d) 5
- 24. P, Q and R are three coplanar forces acting at a point and are in equilibrium. Given P = 1.9318kg-wt, $\sin \theta_1 = 0.9659$, the value of R is (in kg-wt)
 - (a) 0.9659
 - (b) 2
 - (c) 1
 - (d) $\frac{1}{2}$
- 25. A metal sphere is hung by a string fixed to a wall. The sphere is pushed away from the wall by a stick. The forces acting on the sphere are shown in the second diagram. Which of the following statements is wrong
 - (a) $P = W \tan \theta$
 - (b) $\vec{T} + \vec{P} + \vec{W} = 0$
 - (c) $T^2 = P^2 + W^2$
 - (d) T = P + W

NUMERICAL VALUE TYPE QUESTIONS

Questions from 26 to 30 are numerical value type according to the new pattern for JEE Main by NTA.

- If a vector \overrightarrow{P} make angles α , β , and γ respectively with the X, Y and Z axes. $\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma =$
- 27. The maximum and minimum magnitudes of the resultant of two given vectors are 17 units and 7 units respectively. If these two vectors are at right angles to each other, the magnitude of their resultant is
- Given that $\vec{A} + \vec{B} = \vec{C}$ and that \vec{C} is \perp to \vec{A} . 28. Further if $|\vec{A}| = |\vec{C}|$, the angle between \vec{A} and \vec{B} is $n\pi/4$. Find the value of n.
- 29. Vector A has a magnitude of 5 units, lies in the xy-plane and points in a direction 120° from the direction of increasing x. Vector \vec{B} has a magnitude of 9 units and points along the z-axis. The magnitude of cross product $\vec{A} \times \vec{B}$ is
- 30. The edges of parallelepiped are given by the vectors $(2\hat{\imath} + 3\hat{\jmath} + 4\hat{k})$, $4\hat{\jmath}$ and $(5\hat{\jmath} + m\hat{k})$. What should be the value of m in order that the volume of the parallelepiped be 24?

- 23. (a) (b) (c) (d) 24. (a) (b) (c) (d) 25. (a) (b) (c) (d) 26. ()

- 28. 🔾
- 29. 🔾
- 30.

Rahul Science Academy

IIT JEE / NEET / CET Classes

Address: Balewadi High Street, Pune Contact: 7020329384 / 7588305622 Email: share.me650@gmail.com

PHYSICS

(02)

SYLLABUS: SI Units, Fundamental and Derived Units, Dimensions of physical quantities

Date :				1 mar		
1. The unit of system is	the coefficient of viscosity in S.I.	4.		where x is the distance travelled allometers while t is the time in		
(a) <i>m/kg</i> –s	(b) $m-s/kg^2$		(a) km/s	(b) km-s		
(c) kg/m-s ²	(d) kg/m-s		(c) km/s ²	(d) km-s ²		
2. The unit of sel	f-inductance is	5.	The unit of L/R R = resistance	is (where $L = \text{inductance}$ and		
(a) Weber am	pere (b) Weber ⁻¹ ampere		(a) Sec	(b) Sec ⁻¹		
(c) Ohm seco		6.	(c) <i>Volt</i> The unit of absolu	(d) Ampere ute permittivity is		
3. Erg-m ⁻¹ can b	e the unit of measure for	(a) Fm (farad/metre)				
(a) Force	(b) Momentum		(b) Fm^{-1} (farad/s	metre)		
(c) Power	(d) Acceleration		(c) Fm ⁻² (farad/r (d) F (farad)	netre ²)		
RESPONSE	1. abcd 2. abc	d 3. (⊕©@ 4 . (3b ⓒⓓ 5 . ab ⓒⓓ		
GRID	6. abcd					

- The unit of permeability of vacuum (μ_0) is
- (c) NA
- $\frac{\text{watt}}{\text{kelvin}}$ is the unit of
 - (a) Stefan's constant
 - (b) Wien's constant
 - (c) Cooling's constant
 - (d) Thermal conductance
- $\frac{h}{2\pi}$ is the dimension of
 - (a) Velocity
 - (b) Momentum
 - (c) Energy
 - (d) Angular momentum
- 10. The displacement of a particle moving along x-axis with respect to time t is $x = at + bt^2 - ct^3$. The dimensions of c are
 - (a) T^{-3}
- (b) LT^{-2}
- (c) LT-3
- (d) LT^3
- 11. If R and L represent respectively resistance and self-inductance, which of the following combinations has the dimensions of frequency
 - (a) $\frac{R}{I}$
- (c) $\sqrt{\frac{R}{I}}$

- 12. Dimensional formula for volume elasticity is
 - (a) $M^1L^{-2}T^{-2}$
- (b) $M^1L^{-3}T^{-2}$
- (c) $M^1L^2T^{-2}$
- (d) $M^1L^{-1}T^{-2}$
- 13. Which of the following is dimensionally correct
 - (a) Pressure = Energy per unit area
 - (b) Pressure = Energy per unit volume
 - (c) Pressure = Force per unit volume
 - (d) Pressure = Momentum per unit volume per unit time
- Dimensions of specific heat are
 - (a) $M^1L^2T^{-2}\theta^{-1}$
- (b) $L^2T^{-2}\theta^{-1}$
- (c) $L^2T^{-2}\theta^1$
- (d) $M^1L^2\theta^1$
- Which one of the following does not have the same dimensions
 - (a) Work and energy
 - (b) Angle and strain
 - (c) Relative density and refractive index
 - (d) Planck's constant and energy
- 16. Surface tension has the same dimensions as that of
 - (a) Coefficient of viscosity
 - (b) Impulse
 - (c) Momentum
 - (d) Spring constant

- 7. a b c d 8. a b c d 9. a b c d 10. a b c d 11. a b c d

- 12. @ b c d 13. @ b c d 14. @ b c d 15. @ b c d 16. @ b c d

- 17. Given that v is speed, r is the radius and g is the acceleration due to gravity. Which of the following is dimensionless
 - (a) v^2/rg
- (b) v2r/q
- (c) v^2g/r
- (d) $v^2 r q$
- 18. If the acceleration due to gravity is $10 \, ms^{-2}$ and the units of length and time are changed in kilometer and hour respectively, the numerical value of the acceleration is
 - (a) 360000
- (b) 72,000
- (c) 36,000
- (d) 129600 -
- 19. From the dimensional consideration, which of the following equation is correct

- **20.** The dimensions of $e^2/4\pi\varepsilon_0 hc$, where e, ε_0, h and c are electronic charge, electric permittivity, Planck's constant and velocity of light in vacuum respectively
 - (a) $[M^0L^0T^0]$
- (b) $[M^1L^0T^0]$
- (c) $[M^0L^1T^0]$
- (d) $[M^0L^0T^1]$

- 21. If the velocity of light (c), gravitational constant (G) and Planck's constant (h) are chosen as fundamental units, then the dimensions of mass in new system is
 - (a) $c^{1/2}G^{1/2}h^{1/2}$
- (c) $e^{1/2}G^{-1/2}h^{1/2}$
- 22. A dimensionally consistent relation for the volume V of a liquid of coefficient of viscosity η flowing per second through a tube of radius r and length I and having a pressure difference p across its end, is
 - (a) $V = \frac{\pi p r^4}{8nl}$ (b) $V = \frac{\pi \eta l}{8pr^4}$
 - (c) $V = \frac{8p\eta l}{r^4}$ (d) $V = \frac{\pi p\eta}{8lr^4}$
- The SI unit of energy is $J = kgm^2s^{-2}$; that of speed v is ms-1 and of acceleration a is ms-2 Which of the formulae for kinetic energy (K) given below can you rule out on the basis of dimensional arguments (m stands for the mass of the body)
 - (a) $K = m^{-2}v^3$
- (b) $K = (1/2) mv^2$
- (c) K = ma
- (d) $K = (3/16)mv^{-2}$

- 17. a b c d 18. a b c d 19. a b c d 20. a b c d 21. a b c d
- 22. @ © d 23. @ © d

- **24.** Let *g* be the acceleration due to gravity at earth's surface and *K* the rotational kinetic energy of the earth. Suppose the earth's radius decreases by 2%. Keeping mass to be constant, then
 - (a) g increases by 2% and K increases by 2%
 - (b) g increases by 4% and K increases by 4%
 - (c) g increases by 4% and K increases by 2%
 - (d) g increases by 2% and K increases by 4%
- **25.** The frequency of vibration of string is given by $f = \frac{p}{2l} \left[\frac{F}{m} \right]^{1/2}$. Here, p is number of segments in

the string and \hat{l} is the length. The dimensional formula for m will be

- (a) $[M^0L^0T^{-1}]$
- (b) $[ML^0T^{-1}]$
- (c) $[ML^{-1}T^0]$
- (d) $[M^0L^0T^0]$

NUMERICAL VALUE TYPE QUESTIONS

Questions from 26 to 30 are numerical value type according to the new pattern for JEE Main by NTA.

26. Density of wood is $0.5 \, gm/cc$ in the CGS system of units. The corresponding value in MKS units is $n \times 10$, find the value of n.

- **27.** Assuming the mass of Earth as $6.64 \times 10^{24} \, kg$ and the average mass of the atoms that make up Earth as 40u (atomic mass unit), the number of atoms in the Earth are approximately 10^m . Find the value of m.
- **28.** A student determines a dimensionless quantity, $B = \frac{e^n}{2\varepsilon_0 hc}.$ Find the value of n. (here, e = electric charge, $\varepsilon_0 =$ electric permittivity of vacuum, h = Plank's constant and c = speed of light).
- **29.** A particle of mass m is executing oscillation about origin on x-axis. Its potential energy is $U(x) = K|X|^n$. If the time period T is function of its mass, amplitude (a) and a physical quantity K. Find the value of n if $T \propto a^{-\frac{1}{2}}$.
- **30.** A gas bubble, oscillates with a time period T due to an explosion inside it. P, ρ , E denote pressure, density and total energy of the explosion, respectively. If energy of explosion, E is proportional to $T^a \rho^b P^c$. Find the value of $\frac{a^2c}{5b^2}$.

RESPONSE GRID 24. a b c d 25. a b c d 26. C

27. 00

28. 00

29. 🔾

30. 🔾