

Image Credit: https://miro.medium.com/max/1200/1*nC8NtGCK-t0t89VrnDj4cA.png

Voice Transfer Analysis
Author: Sudharsan Gopalakrishnan

Acknowledgment: Mentor: Dr. Ganesh Mani, Carnegie
Mellon University

https://miro.medium.com/max/1200/1*nC8NtGCK-t0t89VrnDj4cA.png

Sudharsan Gopalakrishnan

Table Of Contents:

Introduction to Voice Transfer 2

Why Voice Transfer 2

Research Question 2

Hypothesis 3

Methods 3

Data 5
Word → Hello 6
Word → Recorder 7
Word → Python 7
Word → Data 8
Word → Programming 8
Word → Computer 9

Discussion and Conclusion 10

What would the next steps be? 11

Appendix: 12
Code: 12

References: 16

1

Sudharsan Gopalakrishnan

Introduction to Voice Transfer

Style transfer usually refers to extracting the style of an entity and transferring it to

another object. Voice Transfer, also called Voice cloning, is a type of style transfer that involves

voice style. More specifically, it is a process that involves using a recording of a person’s voice,

extracting his or her style of speaking, and accurately synthesizing a new recording comprising

that same style but for something the person did not previously speak. With Voice Transfer, one

could incorporate a recreated voice of former President Barack Obama as one’s GPS guide or

Elon Musk’s voice as one’s Amazon Alexa voice assistant.

Why Voice Transfer?

During the summer of 2021, one of my parents’ best friends tragically passed away due to

COVID-19, and we all wanted to console his family. As I kept thinking about ways to support

them, I was able to conceive the idea of Voice Transfer to “bring back loved ones”. In other

words, I want my parents’ friend’s family to be able to listen to him again, though not in person,

should they wish. Many others lost their lives due to COVID-19. Even a small amount of

comfort could be vital for those who remain.

2

Sudharsan Gopalakrishnan

Research Question

Using Natural Language Processing (NLP), ideally what kind of algorithm would most

accurately carry out the process of Voice Transfer, and how can I devise an architecture that

would fill in the gaps of the synthesized recording, using existing algorithms and programming

libraries?

Hypothesis

An encoder-vocoder dual system can be utilized to generate a waveform from a speech recording

that can be applied to any text.

Methods

I chose Python as the programming language for this project because of the rich

availability of Machine Learning libraries in that language. To perform Voice Transfer in Python,

one needs to use a Neural Network, a Deep Learning algorithm. The algorithm must be able to

recognize the style of the recorded sound with reasonably good accuracy that can be improved

over time with good training data.

3

Sudharsan Gopalakrishnan

→ Jemine’s SV2TTS diagram 1

For the purposes of this research, I used Resemble AI Machine Learning engineer

Corentin Jemine’s open-source GitHub called Real-Time-Voice-Cloning, which is an

implementation of a Voice Transfer algorithm known as SV2TTS. It comprises a speaker

encoder, a synthesizer, and a vocoder. A speaker encoder is a network that takes in speech as

input for it to be processed and then outputs an embedding to capture the sound of the speaker

but does not take into account what the speaker actually says. The speaker encoder uses factors

such as the pitch, accent, and the tone of the sound coming from the speaker to create a speaker

embedding, which represents the speaker’s identity. The synthesizer takes text as input, which is

mapped to phonemes, the smallest unit of human sound. Using a recurrent network, it then

creates mel spectrograms, a type of data visualization that displays a sound’s frequency versus its

time duration. In this case, Jemine used the Tacotron 2 framework in order to create these 2

spectrograms.

 Jemine’ s paper: https://matheo.uliege.be/bitstream/2268.2/6801/5/s123578Jemine2019.pdf1

 Tacotron 2 Documentation: https://ai.googleblog.com/2017/12/tacotron-2-generating-human-like-speech.html2

4

https://matheo.uliege.be/bitstream/2268.2/6801/5/s123578Jemine2019.pdf
https://ai.googleblog.com/2017/12/tacotron-2-generating-human-like-speech.html

Sudharsan Gopalakrishnan

→ Example of a mel spectrogram generated using Matplotlib 3

A synthesizer must be trained in order to perform as well as possible, so once the speaker

embedding is created, the decoder of the synthesizer generates another mel spectrogram again

recurrently. The generated spectrogram is compared to the original target to generate a loss

which is then optimized for the model to perform more accurately. Lastly, the vocoder turns the

generated mel spectrogram into raw audio that can be listened to as spectrograms do not allow

the sound to be heard. Jemine’s implementation of his vocoder is based on that of WaveNet , a 4

modern Deep Learning model that generates raw audio waveforms. Another thing that should be

completed for voice cloning is called Voice Activity Detection or the process of disregarding the

unvoiced or silent parts of all the input recordings as they can have an influence on the partially

sampled utterances of the original recordings. To do this in Python, Jemine used the webrtcvad

package which would use a binary flag to detect the voiced and unvoiced parts of the 5

recordings.

 https://www2.informatik.uni-hamburg.de/wtm/publications/2019/QWW19/LipSound-%20Neural%20Mel-3

spectrogram%20Reconstruction%20for%20Lip%20Reading-for-WTM-web.pdf

 WaveNet documentation: https://deepmind.com/blog/article/wavenet-generative-model-raw-audio4

 webrtcvad package: https://github.com/wiseman/py-webrtcvad5

5

https://github.com/wiseman/py-webrtcvad
https://deepmind.com/blog/article/wavenet-generative-model-raw-audio

Sudharsan Gopalakrishnan

→ Example of a binary flag on a waveform graph 6

Data

To see how accurate the SV2TTS encoder-vocoder system is, I tested the model with my

own recordings, which I used to synthesize new voices. I created waveforms of both my original

recordings as well as the synthesized recordings and grouped them in sets of two for a side-by-

side comparison. In terms of the content of the recordings, I limited them to one-word recordings

as it is much easier to compare them.

Notes: The x-axis of each graph below represents the time, in samples, and the y-axis of each

graph below represents the frequency of the recorded and synthesized recordings, in Hertz.

 Image from the github to the right: https://github.com/nicklashansen/voice-activity-detection6

6

https://github.com/nicklashansen/voice-activity-detection

Sudharsan Gopalakrishnan

Word → Hello

As seen above, the waveforms look very similar in shape. However, the duration of the

recordings is very different. The original recording’s sample rate is 44100 per sec, the default

sample rate. The synthesized recording’s sample rate is 16100 per sec, much lower than that of

the original recording. The reason for this is the synthesized recording waveform has “gaps” in it

that the synthesizer was not able to capture the style of the original recording entirely. Thus, the

vocoder was only able to generate based on almost all of the voiced parts of the original 7

recording.

In the following pages are some more examples of recorded and synthesized words.

Synthesized Recording:Original Recording:

 Voiced parts of a recording are areas that comprise non-zero amplitudes of sound frequency, or vibrations.7

7

Sudharsan Gopalakrishnan

Word → Recorder

Word → Python

Original Recording: Synthesized Recording:

Synthesized Recording:Original Recording:

8

Sudharsan Gopalakrishnan

Word → Data

Word → Programming

Original Recording: Synthesized Recording:

Synthesized Recording:Original Recording:

9

Sudharsan Gopalakrishnan

Word → Computer

Along with the graphs above, I also surveyed a few of my family members and others

and had them listen to the pairs of original and synthesized recordings above. My family knows

exactly how I sound and acknowledged that the synthesized recordings sounded nearly accurate.

Though anecdotal, this provides additional reinforcement to the synthesized recordings’ level of

accuracy.

Discussion and Conclusion

After researching different algorithms and implementations of Voice Transfer, I

eventually came across Jemine’s implementation of it, which can be viewed publicly at no cost.

While other implementations are available, this one, in particular, is easily accessible from

GitHub and is reasonably well-known. Jemine used an RNN (Recurrent Neural Network), and

Original Recording: Synthesized Recording:

10

Sudharsan Gopalakrishnan

from my research, I learned that this type of neural network is more capable of Voice Transfer

compared with some of the others. RNNs comprise many connections between nodes and layers,

and they are able to recognize sequential characteristics via patterns from the input data–this is

widely used in domains involving prediction. Hence, RNNs outperform other neural networks in

this context. Another way to think about this is how these networks in particular incorporate

recurrence or the idea of continuously going around and around in a network. Computationally,

these networks start with the input, generate weights, and optimize (as much as possible) for the

best model of the input, output based on this, and finally loop back to the beginning to create

better weights and thus better models (or optimize for higher accuracy). This can be analogous to

the engineering design process, which involves brainstorming ideas to solve a problem, choosing

the best one and then testing it, evaluation, and finally back to the start–then further

implementations and improving the idea. RNNs are essentially cyclic networks.

An encoder-vocoder system is actually very accurate considering the overall shapes of

the different pairs of graphs. However, a closer look with a magnifying glass also reveals large

differences between each graph of each pair such as length of samples, amplitude, gaps in the

recordings, frequency of the sound, etc. The reason is that vocoders, at least as of now, really

only have the capability to take in a portion of all the incoming high-frequency components from

recordings/microphones (or any other sources of sound). Thus, they are only able to produce a

time series of signals with some accuracy only. Because Jemine used an RNN, some ways to

improve this would be to increase the number of neurons and hidden layers of the network as

well as using more data and epochs.

11

Sudharsan Gopalakrishnan

What would the next steps be?

As seen in the graphs, the synthesized recordings are not too accurate though they

maintain a relatively similar shape to the original recordings. Up to this point, I have mainly

experimented in terms of recording and synthesizing. I have also tried to analyze the distances

between the peaks of recordings as well as sinusoidal regression. Some ways I can take this

further are to record with different people, of both genders; possibly make this multi-linguistic;

survey more people who know me and create a proper accuracy algorithm that would perhaps

make a model of the original recording and see how well the synthesized recording fits with the

model. One of the main obstacles that are present when it comes to synthesizing new voices is

the gaps in the synthesized recordings. Another goal should be to decrease the number of gaps

overall. This would mean that the vocoder would need to have the capacity to take in additional

high-frequency components from the recordings. But this would also mean high computational

power. One of the primary goals of computer scientists is to minimize the use of computational

power to perform a given task. Think about the movie Jurassic Park (1996, Steven Spielberg).

Geneticists were able to recreate dinosaurs by extracting their DNA from very old mosquitos

caught in amber, or at least what was left of the DNA. There were gaps in the DNA sequences.

To resolve this, the geneticists used frog DNA to “fill in the gaps and complete the codes”. This

can also apply here. In other words, instead of using a lot more computational power, it is

possible to fill in those gaps with a relatively simple pattern recognition algorithm (simple

compared to vocoder enhancement). Using a vocoder is vital for voice cloning, but it need not

necessarily be improved for better results. Having these kinds of algorithms to “fill the gaps” are

12

Sudharsan Gopalakrishnan

more than adequate for improvement.

Appendix:

Code:

In order to access Jemine’s GitHub as well as import all the necessary libraries, I coded the

following.

13

Sudharsan Gopalakrishnan

To record sounds, instead of manually recording with a recorder app, I created my own

program that would use Exception Handling to do so. Essentially, the program immediately starts

when it runs and instantly stops when there is a keyboard interruption.

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import sklearn as sk
from playsound import playsound
from io import BytesIO

import sys
sys.path.append('Real-Time-Voice-Cloning')

from IPython.display import display, Audio, clear_output
from IPython.utils import io
import ipywidgets as widgets
import numpy as np

from synthesizer.inference import Synthesizer
from encoder import inference as encoder
from vocoder import inference as vocoder
from pathlib import Path

encoder.load_model('Real-Time-Voice-Cloning' / Path("encoder/saved_models/
pretrained.pt"))
synthesizer = Synthesizer('Real-Time-Voice-Cloning' / Path("synthesizer/
saved_models/pretrained/pretrained.pt"))
vocoder.load_model('Real-Time-Voice-Cloning' / Path("vocoder/saved_models/
pretrained/pretrained.pt"))

14

Sudharsan Gopalakrishnan

→	The code above records sound with the pyaudio library and stores the recording into a file

with the wave library.

To use Jemine’s synthesizer, I coded the following.

import pyaudio
import wave

audio = pyaudio.PyAudio()
stream = audio.open(format=pyaudio.paInt16, channels=1, rate=44100,
input=True, frames_per_buffer=1024)
frames = []

try:
 while True:
 data = stream.read(1024)
 frames.append(data)
except KeyboardInterrupt:
 pass

stream.stop_stream()
stream.close()
audio.terminate()

sound_file = wave.open("recording.wav", "wb")
sound_file.setnchannels(1)
sound_file.setsampwidth(audio.get_sample_size(pyaudio.paInt16))
sound_file.setframerate(44100)
sound_file.writeframes(b''.join(frames))

15

Sudharsan Gopalakrishnan

sound = encoder.embed_utterance(encoder.preprocess_wav('recording.wav',
44100))
text = "Programming"
print("Synthesizing new audio...")
#with io.capture_output() as captured:
specs = synthesizer.synthesize_spectrograms([text], [sound])
generated_wav = vocoder.infer_waveform(specs[0])
generated_wav = np.pad(generated_wav, (0, synthesizer.sample_rate),
mode="constant")
clear_output()
new_sound = display(Audio(generated_wav, rate=synthesizer.sample_rate,
autoplay=True))
new_sound

16

Sudharsan Gopalakrishnan

References:

Github. (n.d.). RealTimeVoiceCloning. Google Colab. https://towardsdatascience.com/you-can-

now-speak-using-someone-elses-voice-with-deep-learning-8be24368fa2b

Mwiti, D. (2019, August 28). A 2019 Guide to Speech Synthesis with Deep Learning. Heartbeat.

https://heartbeat.fritz.ai/a-2019-guide-to-speech-synthesis-with-deep-

learning-630afcafb9dd

Resemble AI. (n.d.). Real-Time-Voice-Cloning. Github. https://github.com/CorentinJ/Real-Time-

Voice-Cloning

Resemble AI. (2019). Master thesis: Automatic Multispeaker Voice Cloning. Liége Université

Library, 10-29. https://matheo.uliege.be/bitstream/2268.2/6801/5/

s123578Jemine2019.pdf

Seif, G. (2019, July 2). You can now speak using someone else’s voice with Deep Learning.

towards data science. https://towardsdatascience.com/you-can-now-speak-using-

someone-elses-voice-with-deep-learning-8be24368fa2b

17

	Introduction to Voice Transfer
	Why Voice Transfer?
	Research Question
	Hypothesis
	Methods
	Data
	Word → Hello
	Word → Recorder
	Word → Python
	Word → Data
	Word → Programming
	Word → Computer

	Discussion and Conclusion
	What would the next steps be?
	Appendix:
	Code:

	References:

