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What is difference between OLAP and OLTP? 

  OLAP OLTP 

 Online Analytical Processing Online Transaction Processing 

Purpose OLAP databases are designed for complex 
analytical and ad-hoc querying. They are 
used for data analysis, business intelligence, 
and decision support. OLAP systems are 
optimized for retrieving and processing large 
volumes of historical or aggregated data to 
help users gain insights and make informed 
decisions. 

OLTP databases are designed for transactional 
processing. They are used for recording and 
managing day-to-day operational data, such 
as sales transactions, inventory management, 
and customer interactions. OLTP systems are 
optimized for quick and precise retrieval and 
updating of individual records. 

Data Structure OLAP databases typically store historical, 
summarized, and multidimensional data. 
They use a star or snowflake schema and 
often involve data warehousing techniques. 
Data is denormalized and aggregated for 
efficient querying. 

OLTP databases store normalized 
transactional data with a focus on maintaining 
data integrity. The data is typically organized 
into tables with relationships to minimize 
redundancy and ensure accuracy. 

Query Complexity OLAP queries are often complex and involve 
aggregations, grouping, and calculations. 
Users perform data analysis to answer 
strategic questions or gain insights into 
trends. 

OLTP queries are straightforward and 
primarily involve basic CRUD operations 
(Create, Read, Update, Delete). The focus is on 
recording and retrieving individual 
transactions efficiently. 

Data Volume OLAP databases handle large volumes of 
historical data and are optimized for read-
heavy workloads. 

OLTP databases handle a high volume of 
concurrent, short, and simple transactions. 
They are optimized for write-heavy workloads. 

Indexing OLAP databases often have a limited number 
of indexes optimized for query performance. 

OLTP databases typically have many indexes 
to ensure the speedy retrieval of individual 
records. 

Concurrency OLAP systems usually have low concurrency 
requirements because analytical queries are 
less frequent. 

OLTP systems require high levels of 
concurrency to support multiple simultaneous 
users performing various transactions. 

Data Modification Data modification operations (inserts, 
updates, deletes) are infrequent in OLAP 
systems and usually occur during the data 
loading process. 

Data modification operations are frequent and 
form the core of OLTP database functionality. 
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What is Data Warehouse? 

A data warehouse is a specialized and centralized repository for storing, managing, and consolidating large volumes 

of data from various sources within an organization. It is designed to facilitate efficient querying and analysis of data 

to support business intelligence and decision-making processes. Data warehouses are a core component of data 

management and analytics in many organizations. Data warehouses play a critical role in enabling organizations to 

gain insights from their data, support strategic decision-making, and improve overall business performance. Here are 

the key characteristics and functions of a data warehouse: 

1. Data Integration: Data warehouses gather data from multiple sources, which can include operational 

databases, external data feeds, spreadsheets, and more. The data is integrated and transformed to ensure 

consistency and quality. 

2. Data Storage: Data is stored in a structured format within the data warehouse. This format is often a 

relational database management system (RDBMS) with tables, columns, and rows. The data is organized for 

ease of retrieval and analysis. 

3. Data Modeling: Data in a data warehouse is typically organized using a specific schema that is optimized for 

query performance. Common schemas include the star schema and snowflake schema. These schemas 

define fact tables (containing numerical measures) and dimension tables (describing attributes). 

4. Data History: Data warehouses often maintain historical data, allowing organizations to analyze trends and 

track changes over time. This historical perspective is essential for business intelligence and reporting. 

5. Data Quality: Data quality is a priority in data warehousing. Systems often include mechanisms for data 

cleansing, validation, and consistency checks to ensure the accuracy and reliability of the stored data. 

6. Data Security: Data warehouses incorporate security features to protect sensitive and confidential data. 

These features include access control, authentication, encryption, and auditing. 

7. Query and Analysis: Data warehouses are designed to support complex querying and reporting. Tools and 

technologies for data analysis, such as business intelligence (BI) software, can be used to derive insights from 

the data. 

8. Scalability: Data warehouses need to be scalable to handle the growing volume of data and increasing user 

demands. This scalability may involve hardware and software scaling, as well as data partitioning and 

distribution. 

9. Data Access: Users can access the data warehouse through various means, including SQL queries, reporting 

tools, dashboards, and analytics applications. 

10. Data Loading: Data is periodically loaded into the data warehouse, often in batch processes scheduled at 

regular intervals. 

 

 

 

 

 

 

 

 



 

 

What is DAG and it's benefit? 

A DAG, or Directed Acyclic Graph, is a data structure commonly used in various computational and mathematical 

applications, including computer science, task scheduling, and data processing. It is a collection of nodes connected 

by directed edges or arrows in a way that does not form any cycles. Here's an explanation of what a DAG is and its 

benefits: 

Directed Acyclic Graph (DAG): 

1. Directed: In a DAG, each edge has a direction, which means it goes from one node (or vertex) to another. This 

direction indicates a relationship or dependency between the two nodes. Node A points to node B if there's a 

directed edge from A to B. 

2. Acyclic: The term "acyclic" means that there are no cycles or closed loops in the graph. In other words, you 

cannot start at one node and follow directed edges to return to the same node. This property is essential in 

various applications, especially when modeling dependencies, to avoid infinite loops. 

Benefits of DAGs: 

1. Modeling Dependencies: DAGs are widely used to model and represent dependencies between tasks, 

operations, or events. For example, in project scheduling, tasks can be represented as nodes, and 

dependencies between tasks as directed edges in a DAG. This helps in visualizing and understanding the 

order in which tasks should be performed. 

2. Task Scheduling: DAGs are crucial for task scheduling in various domains, such as job scheduling in data 

processing frameworks like Apache Spark or Apache Airflow. Each task is represented as a node, and 

dependencies between tasks are defined using directed edges. This ensures that tasks are executed in the 

correct order to meet dependencies. 

3. Optimizing Computations: In computational tasks like dynamic programming and optimization problems, 

DAGs are used to store and organize intermediate results. By storing and reusing intermediate computations, 

redundant work can be avoided, leading to more efficient algorithms. 

4. Parallel Processing: In distributed computing and parallel processing, DAGs are used to represent tasks or 

data transformations that can be executed concurrently. This allows for the efficient utilization of multiple 

processors or computing resources. 

5. Data Flow: In data processing and ETL (Extract, Transform, Load) pipelines, DAGs represent the flow of data 

from source to destination. Each node in the DAG represents a transformation or processing step, and edges 

indicate the data flow direction. 

6. Dependency Resolution: In software dependency management, DAGs help resolve and manage 

dependencies between software components or libraries. This is common in package managers like npm 

(Node Package Manager) and pip (Python package manager). 

7. Reducing Re-computation: By storing intermediate results in a DAG, redundant computations can be 

minimized. This is particularly beneficial in scenarios where calculations are expensive, such as in scientific 

simulations or complex data analysis. 

In summary, DAGs provide a structured way to represent and manage dependencies, making them a valuable tool in 

various computational and scheduling tasks. They help improve efficiency, minimize redundancy, and ensure that 

tasks or operations are executed in the correct order, which is crucial in fields like project management, data 

processing, and distributed computing. 

 

 



 

 

What is difference Temp view vs Global View in Data bricks? 

 Temporary View (Temp View): Global View (Global Temp View) 

Scope Temp views are limited to a single session or 
notebook in Databricks. They are local to the 
specific session or notebook where they are 
created. 

Global views have a broader scope and are 
available across multiple sessions or notebooks in 
Databricks. They are global to the entire 
workspace. 

Lifetime Temp views are temporary and exist for the 
duration of the session or notebook in which they 
were created. They are automatically removed 
when the session ends, or the notebook is closed. 

Global views are temporary like temp views but 
persist as long as the Databricks workspace is 
active. They are removed only when explicitly 
dropped or if the workspace is deleted. 

Usage Temp views are typically used for short-term or ad-
hoc data analysis within a specific notebook. They 
are useful when you need to query or analyse data 
within a specific context. 

Global views are useful for sharing data across 
multiple notebooks or collaborating with others 
within the same Databricks workspace. They 
allow you to define a dataset once and access it 
from different notebooks or sessions. 

 

In summary, the key difference between Temp Views and Global Views in Databricks is their scope and lifetime. Temp 

Views are local to a specific session or notebook and have a short-term existence, while Global Views are accessible 

across the entire Databricks workspace and persist until explicitly dropped or the workspace is deleted. The choice 

between the two depends on your specific use case and whether you need the data to be available globally or just 

within a specific session or notebook. 

What is difference between coalesce and re-partition? 

coalesce and repartition are two operations in Apache Spark used for controlling the partitioning of data in a 

Resilient Distributed Dataset (RDD) or a DataFrame. While both operations are related to partitioning data, they 

serve different purposes and have some key differences: 

Coalesce Repartition 

• coalesce is an operation that reduces the 
number of partitions in an RDD or DataFrame. 

• It is used to merge smaller partitions into larger 
ones, which can be beneficial when you have 
too many small partitions, and you want to 
reduce the overhead of managing them. 

• coalesce typically results in data shuffling, but it 
tries to minimize data movement by coalescing 
adjacent partitions within the same executor 
node. 

• It's often used to optimize the number of 
partitions to match the available resources (CPU 
cores, memory) and minimize task scheduling 
overhead. 

• You can optionally specify the number of 
partitions you want after coalescing, and Spark 
will try to coalesce the data into that number of 
partitions. 

• Syntax to Reduce the number of partitions to 4 
df = df.coalesce(4) 

 

• repartition is used to change the number of 
partitions in an RDD or DataFrame, either by 
increasing or decreasing the number of 
partitions. 

• It can be used to redistribute data across 
partitions to achieve better parallelism or to 
balance the data distribution. 

• repartition often involves data shuffling, and it 
allows you to explicitly specify the number of 
partitions you want in the resulting RDD or 
DataFrame. 

• You can also use repartition to change the 
partitioning column or expression, which is 
particularly useful when you want to change 
the way data is distributed across partitions 
based on a specific column. 

• Syntax to Repartition to 8 partitions 
df = df.repartition(8) 

 

 

 



 

 

What is difference between coalesce and partition? 

The terms "coalesce" and "partition" are often used in the context of data processing, particularly in distributed 

computing frameworks like Apache Spark, but they have different meanings and purposes. Let me clarify the 

distinction between the two: 

Coalesce Partition 

Coalesce is primarily used to reduce the number of 
partitions or data shuffling in a distributed dataset or 
table. It involves combining existing partitions into a 
smaller number of partitions without performing a full 
data shuffle. This operation is typically used to optimize 
the distribution of data and reduce the overhead of 
managing a large number of partitions. 

Partitioning refers to the way data is physically 
organized or distributed within a dataset or table. It 
involves dividing data into smaller subsets based on 
specific criteria, such as a column value or a hashing 
algorithm. Partitioning is often used to improve query 
performance, as it allows for efficient data retrieval 
based on the partitioning key. 

Key points about coalesce: 
• Decreases the number of partitions. 
• Minimizes data shuffling. 
• Typically used to improve query performance 

by reducing the overhead of managing many 
partitions. 

• Does not change the data's content; it only 
changes the organization of partitions. 
 
 
 

• In the context of Apache Spark, "coalesce" 
refers to an operation that reduces the number 
of partitions in a Resilient Distributed Dataset 
(RDD) or a DataFrame. The purpose of coalesce 
is to merge smaller partitions into larger ones, 
thereby reducing the overhead of managing a 
large number of partitions. 

• Coalesce tries to minimize data shuffling by 
coalescing adjacent partitions within the same 
executor node. 

• It is typically used to optimize the number of 
partitions to match the available resources (CPU 
cores, memory) and minimize task scheduling 
overhead. 

• Syntax to Reduce the number of partitions to 3 
new_rdd = old_rdd.coalesce(3) 

 

Key points about partitioning: 
• Divides data into smaller subsets (partitions) 

based on specific criteria (e.g., a column's 
value). 

• Improves query performance by allowing for 
partition pruning, where only relevant 
partitions are scanned during queries. 

• Commonly used in databases and distributed 
data processing frameworks. 

• May involve data redistribution and can be an 
expensive operation if not done carefully. 
 

• In the context of data storage and databases, 
"partition" typically refers to the practice of 
dividing and organizing data in a data store 
(e.g., a table in a relational database) into 
smaller, manageable units based on certain 
criteria, such as date ranges or specific values of 
a column. 

• Data partitioning helps improve data 
management, retrieval, and query 
performance. Queries can be executed on 
specific partitions, which can reduce the 
amount of data that needs to be scanned. 

• In the context of Spark, when we talk about 
"partitioning," it often relates to how data is 
distributed across partitions within RDDs or 
DataFrames. 

• Syntax to create Partition at table level: 
CREATE TABLE sales ( 
    sale_date DATE, 
    amount DECIMAL 
) 
USING delta 
PARTITION BY RANGE (sale_date); 
 
OR 

     df.write.format("delta")/ 

     .partitionBy("state")/                 

     .save("/FileStore/tables/sales") 



 

 

How to create spark session? 

Creating a Spark session is a fundamental step when working with Apache Spark, a popular open-source big data 

processing framework. A Spark session provides an entry point to interact with Spark and allows you to configure 

various settings and work with data in a distributed and parallel manner. Here's how you can create a Spark session 

using the Python API (PySpark): 

from pyspark.sql import SparkSession 

# Create a Spark session 

spark = SparkSession.builder \ 

    .appName("YourAppName") \ # Set your application name 

    .master("local[*]") \    # Set the Spark master URL (local[*] for local mode) 

    .config("key", "value") \ # Additional configurations (if needed) 

    .getOrCreate() 

# Once you have created the Spark session, you can use it to work with Spark DataFrames, perform transformations, 

and run Spark jobs. 

Let's break down the steps: 

1. Import the SparkSession class from pyspark.sql. 

2. Create a SparkSession instance using the builder pattern. 

3. Set the application name with .appName("YourAppName"), where "YourAppName" is the name you want to 

give to your Spark application. 

4. Set the master URL using .master("local[*]"). The master URL specifies the cluster manager or execution 

mode. In this example, we're using "local[*]" for local mode. In a production environment, you would specify 

the cluster manager's URL (e.g., "yarn", "mesos", "spark://host:port"). 

5. Optionally, you can set additional configuration options using .config("key", "value"). For example, you can 

configure the number of CPU cores, memory, or other Spark settings here. 

6. Finally, call .getOrCreate() to either get an existing Spark session or create a new one if it doesn't exist. 

Once you've created the Spark session, you can use it to perform various data processing tasks, including reading and 

writing data, running SQL queries, and applying transformations to Spark DataFrames. 

Remember that this example is for PySpark (Python API for Spark). If you're using Spark with a different language API 

(such as Scala or Java), the process for creating a Spark session will be similar, but the code syntax may vary. 

 

 

 

 

 

 

 

 



 

 

What is Unity Catalog in Azure Databricks and it's Key Features? 

Unity Catalog provides centralized access control, auditing, lineage, and data discovery capabilities across Azure 

Databricks workspaces. 

 

Key features of Unity Catalog include: 

• Define once, secure everywhere: Unity Catalog offers a single place to administer data access policies that 

apply across all workspaces. 

• Standards-compliant security model: Unity Catalog’s security model is based on standard ANSI SQL and 

allows administrators to grant permissions in their existing data lake using familiar syntax, at the level of 

catalogs, databases (also called schemas), tables, and views. 

• Built-in auditing and lineage: Unity Catalog automatically captures user-level audit logs that record access to 

your data. Unity Catalog also captures lineage data that tracks how data assets are created and used across 

all languages. 

• Data discovery: Unity Catalog lets you tag and document data assets, and provides a search interface to help 

data consumers find data. 

• System tables (Public Preview): Unity Catalog lets you easily access and query your account’s operational 

data, including audit logs, billable usage, and lineage. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

What is lazy transformation in databricks? 

Databricks and Apache Spark, "lazy transformation" refers to a fundamental concept related to how data 

transformations are processed in a lazy and optimized manner. Lazy transformation is a key part of the Spark's 

execution model, and it contributes to the platform's efficiency and performance. Here's an explanation of lazy 

transformation in Databricks and Apache Spark: 

Lazy Transformation in Apache Spark: 

1. Transformations: In Spark, transformations are operations that modify a Resilient Distributed Dataset (RDD) 

or a DataFrame to produce a new RDD or DataFrame. Examples of transformations include map, filter, 

groupBy, and join. Transformations are performed on distributed data, and they represent a sequence of 

operations to be executed on that data. 

2. Lazy Evaluation: Spark employs a lazy evaluation strategy for transformations. This means that when you 

apply a transformation to an RDD or DataFrame, Spark doesn't immediately execute the transformation. 

Instead, it records the transformation in a logical execution plan (a directed acyclic graph or DAG). 

3. Benefits of Lazy Evaluation: 

• Optimization: Lazy evaluation allows Spark to perform various optimizations on the execution plan. It 

can reorder, combine, or eliminate certain operations to improve performance. 

• Efficiency: Spark avoids unnecessary work by only executing the transformations that are required to 

compute the final result. This saves computation and memory resources. 

• Fault Tolerance: Spark can recover from failures more efficiently because it has the original data and 

can recompute only the lost or missing transformations. 

4. Action Triggers Execution: Lazy evaluation means that transformations are not executed until an "action" is 

called. Actions are operations that return results to the driver program or write data to an external storage 

system. Common actions include count, collect, saveAsTextFile, and show. 

Example: 

# Create an RDD and apply transformations (lazy) 

data = [1, 2, 3, 4, 5] 

rdd = sc.parallelize(data) 

filtered_rdd = rdd.filter(lambda x: x % 2 == 0) 

mapped_rdd = filtered_rdd.map(lambda x: x * 2) 

# Perform an action to trigger execution 

result = mapped_rdd.collect() 

In this example, the filter and map transformations are applied to the RDD, but the actual execution doesn't happen 

until the collect action is called. The lazy evaluation mechanism allows Spark to optimize and execute only the 

necessary computations to produce the final result. 

Lazy transformation is a core principle of Spark's design, enabling it to be efficient, fault-tolerant, and capable of 

optimizing workloads for distributed data processing. 

 

 

 



 

 

What is ACID transaction in Databricks? 

ACID is an acronym that stands for Atomicity, Consistency, Isolation, and Durability. ACID transactions are a set of 

properties that guarantee reliable processing of database transactions. These properties ensure that database 

transactions are processed reliably, and they are often associated with relational database management systems 

(RDBMS). While Databricks itself is not a database management system, it can be used in conjunction with various 

data storage systems, including databases, data lakes, and more. 

Let's break down what each of the ACID properties means: 

1. Atomicity: This property ensures that a transaction is treated as a single, indivisible unit of work. Either all 

the changes made within a transaction are committed (applied) to the database, or none of them are. If any 

part of the transaction fails, the entire transaction is rolled back, and the database remains in its original 

state. 

2. Consistency: Consistency ensures that a transaction brings the database from one consistent state to 

another. In other words, it guarantees that the database adheres to a set of integrity constraints (e.g., foreign 

key relationships, unique constraints) before and after the transaction. 

3. Isolation: Isolation guarantees that multiple transactions can be executed concurrently without interfering 

with each other. It ensures that each transaction is isolated from others until it's completed. The levels of 

isolation, often referred to as isolation levels (e.g., Read Uncommitted, Read Committed, Repeatable Read, 

Serializable), define the degree to which transactions are isolated from each other. 

4. Durability: Durability ensures that once a transaction is committed, its changes are permanent and will 

survive any system failures, such as power outages or crashes. These changes are typically written to durable 

storage (e.g., disk or solid-state drive) and will be available even if the database system restarts. 

In the context of Databricks, the term "ACID transaction" is commonly associated with data lakes and distributed 

processing frameworks like Delta Lake. Delta Lake is an open-source storage layer that brings ACID transaction 

capabilities to data lakes. With Delta Lake, you can perform ACID transactions on data stored in distributed file 

systems like Hadoop Distributed File System (HDFS) or cloud-based storage systems like Amazon S3 or Azure Data 

Lake Storage. 

Databricks, when used with Delta Lake, provides the capability to work with ACID transactions, ensuring that data 

operations (inserts, updates, deletes) are atomic, consistent, isolated, and durable, even in a distributed and parallel 

processing environment. 

In summary, ACID transactions in Databricks, when combined with Delta Lake, offer reliable and consistent data 

processing and management in data lakes, providing the same level of transactional integrity that traditional 

relational databases offer. 

 

 

 

 

 

 

 

 

 



 

 

What is Azure Active Directory and it’s key feature? 

Azure Active Directory (Azure AD) is Microsoft's cloud-based identity and access management service. It is designed 

to provide secure and seamless authentication and authorization services for applications, services, and resources 

running in the Microsoft Azure cloud environment and other Microsoft services. Azure AD is a fundamental 

component of Microsoft's cloud ecosystem, including Azure, Office 365, and various other Microsoft cloud services. 

Key features and aspects of Azure Active Directory include: 

1. Identity Management: Azure AD allows organizations to manage user identities and access control. It 

includes features such as user provisioning, single sign-on (SSO), multi-factor authentication (MFA), and self-

service password reset. 

2. Single Sign-On (SSO): Azure AD enables users to sign in once with their credentials and gain access to various 

applications and services without the need to enter their credentials repeatedly. This simplifies the user 

experience and enhances security. 

3. Multi-Factor Authentication (MFA): Organizations can enforce additional security measures by requiring 

users to provide multiple forms of verification, such as a password and a mobile app approval, before gaining 

access to resources. 

4. Application Access Management: Azure AD allows organizations to control and manage access to 

applications, whether they are hosted in the cloud or on-premises. It supports thousands of pre-integrated 

applications and services. 

5. Identity Federation: Organizations can establish trust relationships between their on-premises Active 

Directory and Azure AD, enabling seamless access to cloud resources using existing on-premises credentials. 

6. B2B and B2C Identity Scenarios: Azure AD supports both business-to-business (B2B) and business-to-

consumer (B2C) identity scenarios. This means it can be used for external partner collaboration and 

customer-facing applications. 

7. Conditional Access: Conditional Access policies can be defined to control access based on specific conditions, 

including device compliance, location, and more. 

8. Security and Monitoring: Azure AD provides security features like Identity Protection, which helps detect and 

mitigate security risks. It also offers reporting and auditing capabilities to monitor access and identity-related 

activities. 

9. Integration with Azure Services: Azure AD is tightly integrated with other Microsoft Azure services, making it 

easier to secure and manage identity for Azure-hosted applications and resources. 

10. Developer Integration: Azure AD provides APIs and tools for developers to build identity and authentication 

features into their applications, whether they are web applications, mobile apps, or API services. 

Azure AD is a critical component for securing access to resources in the Azure cloud environment and Microsoft's 

broader ecosystem. It plays a central role in identity and access management, contributing to a more secure and 

efficient cloud computing experience for organizations and users. 

 

 

 

 

 



 

 

What is data Lineage and it’s key component and benefit? 

Data lineage is a critical aspect of data management and governance that involves tracking and documenting the flow 

of data as it moves through various stages of a data pipeline or data ecosystem. It provides a comprehensive view of 

how data is sourced, transformed, and consumed, and it helps organizations understand the origins, transformations, 

and destinations of their data. Data lineage is valuable for a variety of reasons, including data quality assurance, 

compliance, troubleshooting, and impact analysis. 

Key components and concepts related to data lineage include: 

1. Data Sources: Data lineage begins with the identification of data sources. These sources can be databases, 

files, external systems, or data feeds. Understanding where data originates is crucial for tracking its journey. 

2. Data Transformations: Data often undergoes various transformations as it is processed. These 

transformations can include data cleaning, aggregation, filtering, and enrichment. Each transformation 

should be documented in the data lineage to show how data evolves. 

3. Data Movement: Data may be moved from one location to another, whether that's within an organization's 

infrastructure or across systems. Understanding the paths data takes is essential. 

4. Data Storage: Data lineage also includes information about where data is stored at different stages. This can 

include data warehouses, data lakes, or specific databases. 

5. Consumers: Data lineage tracks who consumes the data and how they use it. This includes reports, 

dashboards, analytics tools, and other applications that rely on the data. 

Benefits of Data Lineage: 

1. Data Quality Assurance: Data lineage helps organizations ensure data accuracy and integrity by tracing data 

anomalies back to their sources. This is critical for data quality management. 

2. Compliance: For industries with regulatory requirements (e.g., finance, healthcare), data lineage is essential 

for demonstrating data traceability and compliance with data governance regulations. 

3. Troubleshooting: When data issues or errors occur, data lineage can quickly pinpoint the source of the 

problem, making it easier to address and resolve issues. 

4. Impact Analysis: Data lineage allows organizations to assess the potential impact of changes to data sources, 

transformations, or data models before implementing those changes. This helps in planning and risk 

management. 

5. Documentation: Data lineage serves as comprehensive documentation for an organization's data 

infrastructure, making it easier for data engineers, analysts, and other stakeholders to understand and work 

with data. 

6. Data Governance: Data lineage is a fundamental component of data governance, as it helps establish data 

stewardship and data ownership practices. 

7. Data Lifecycle Management: Understanding data lineage is crucial for managing the lifecycle of data, 

including data archiving, retention, and deletion. 

Tools and technologies, both commercial and open-source, are available to help organizations capture and visualize 

data lineage. These tools automate the tracking and documentation of data movement and transformations, making 

it more efficient to manage data across its lifecycle. 

 

 



 

 

What is Wide and Narrow transformations? 

In the context of Apache Spark, a widely used distributed data processing framework, "wide" and "narrow" 

transformations refer to two categories of operations used in Spark's Resilient Distributed Dataset (RDD) and 

DataFrame APIs. These terms describe how data is processed and transformed across partitions in a distributed 

computing environment. 

1. Narrow Transformations: 

• Narrow transformations are transformations that operate on a single partition of data at a time. They 

don't require shuffling or data exchange between partitions. 

• They are executed independently on each partition, and the result for each partition is computed 

based solely on the data within that partition. 

• Examples of narrow transformations include map, filter, union, and local operations. These 

transformations do not require data to be reorganized or moved between partitions. 

• Narrow transformations are generally more efficient and faster because they don't incur the 

overhead of data shuffling. 

2. Wide Transformations: 

• Wide transformations, also known as "shuffle transformations," are transformations that involve data 

exchange and reorganization between partitions. They require the reshuffling and redistribution of 

data across partitions, and they often involve grouping, aggregating, or sorting operations that 

require data from multiple partitions. 

• Examples of wide transformations include groupByKey, reduceByKey, join, and sortByKey. These 

transformations involve data shuffling and result in a more significant computational overhead. 

• Wide transformations are typically more time-consuming and resource-intensive because they 

involve moving and redistributing data across the cluster. They can also lead to network and disk I/O 

bottlenecks. 

The choice of whether to use narrow or wide transformations depends on your specific data processing needs and 

efficiency considerations. In general: 

• Narrow transformations are preferred when you can achieve the desired result without reshuffling data 

between partitions. They are typically faster and more efficient. 

• Wide transformations are necessary when you need to aggregate or combine data from multiple partitions, 

and reshuffling is required to produce the correct result. While wide transformations are slower, they can be 

essential for complex data processing tasks. 

Understanding the distinction between narrow and wide transformations is crucial for optimizing the performance of 

your Spark applications, as minimizing data shuffling can significantly improve processing speed and resource 

utilization. 

 

 

 

 

 

 



 

 

Difference between delta lake storage and data lake storage? 

Delta Lake and Data Lake Storage are two different concepts related to data storage and management in big data and 

cloud computing. Here are the key differences between Delta Lake and Data Lake Storage: 

1. Data Lake Storage: 

• Data Lake Storage is a storage concept that typically refers to a central repository for storing and 

managing vast amounts of raw and unprocessed data in its native format. It can store structured 

data, semi-structured data, and unstructured data. 

• Data Lake Storage is often implemented using distributed file systems such as Hadoop Distributed 

File System (HDFS) on-premises or cloud-based storage solutions like Amazon S3, Azure Data Lake 

Storage (ADLS), or Google Cloud Storage. 

• Data in a Data Lake Storage system is often stored in a variety of file formats like Parquet, Avro, JSON, 

and others, making it suitable for big data analytics and data processing. 

2. Delta Lake Storage: 

• Delta Lake is a storage layer that can be built on top of Data Lake Storage systems to add 

transactional and ACID (Atomicity, Consistency, Isolation, Durability) capabilities to data lakes. 

• Delta Lake provides features like ACID transactions, schema enforcement, data versioning, and data 

lineage. It ensures data quality, reliability, and consistency for data stored in Data Lake Storage. 

• With Delta Lake, you can perform operations like inserts, updates, deletes, and merges on data in a 

transactional manner, similar to traditional relational databases. 

• It uses a proprietary file format and transaction log to manage data changes and versions. 

In summary, Data Lake Storage is a general concept for storing large volumes of raw and unprocessed data in a Data 

Lake, while Delta Lake is a specific technology or storage layer that adds transactional capabilities and data quality 

features to Data Lakes. Delta Lake is often used in scenarios where data quality, consistency, and reliability are crucial, 

and it's compatible with various cloud-based and on-premises Data Lake Storage solutions. Delta Lake can be 

considered an enhancement to Data Lake Storage, providing ACID transaction capabilities for big data workloads. 

 

 

 

 

 

 

 

 

 

 


