Production Area QC: Automating Processes to Improve Quality and Efficiency

Key Benefits of Automating

- 1. Automate or control redundant tasks that cause operator errors
- 2. Simplify procedures to reduce labor, inefficiency
- 3. Software-enforced Standard Operating Procedures (SOPs) ensure consistent performance and accountability -- every line, shift, day

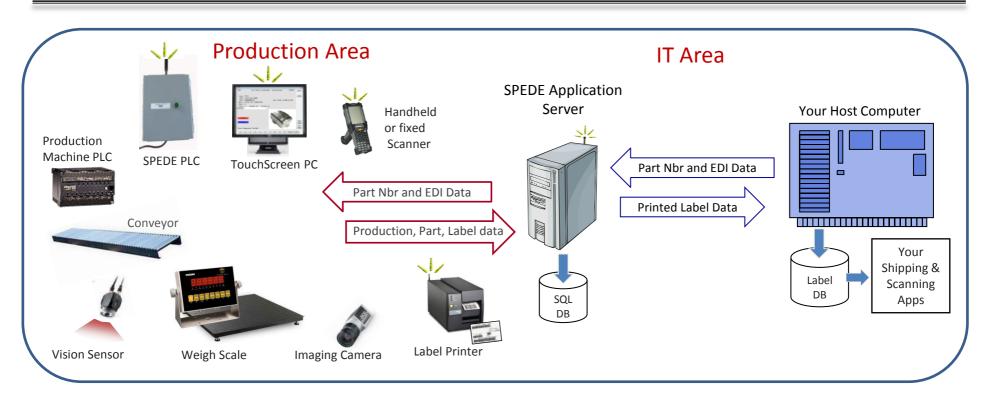
- 4. Real-time 20/20 visibility into operations, including WIP, Production, Packaging, Labeling, Shipping
- 5. Automatically create detailed serialized Traceability records backward/ forward

SPEDE Solutions Automate These Processes

- 1. WIP Components Tracking
- 2. Parts Identification
- 3. Parts Counting
- 4. Serialized Parts Labeling
- 5. Detecting Good Parts vs. Scrap
- 6. Production Reporting
- 7. Packing Containers/ Dunnage
- 8. Container Labeling
- 9. Parts Tracking
- 10. Shipping
- 11. Traceability RAW, WIP, FIN
- 12. For Honda Small Lot Store, Honda Batch

Technology is Key to QC

SPEDE WiFi Solutions integrate a wide variety of technologies:


- Production Machine PLCs
- Vision Sensors
- Conveyors/ Diverters
- Weigh / Count Scales
- USB Camera systems
- OCR
- 2D Encoders, Etchers, Scanners
- Label Printers
- Touchscreen PC browser
- WiFi and Wired networks
- Interfaces to Host ERP, EDI, RAS, OEE systems

Vision Technology can ensure that Finished Parts are accurately Identified, Counted and Packed

Overview of SPEDE Automated Solutions

SPEDE Apps Interface to and Control Production Area Devices

• PLC, Touchscreen PC, Handheld Scanner, Vision Sensor, Scale, Printer, Imaging Camera

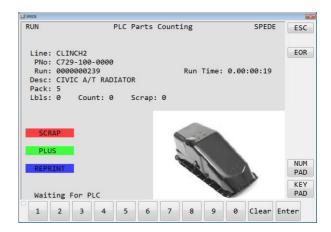
Prints Labels + Collects OEE Data

- Gets label data from host ERP, EDI, Release Accounting
- Time-stamps & logs printed label data, piece count, scrap & cycles data into SQL DB
- Printed Label Data is available to Host systems for Parts Traceability, OEE analysis, Shipping, etc.

6 Advantages of SPEDE Automation

1: Error Prevention

- Identify good parts vs. scrap / divert the scrap
- Validate the correctness of a part at packing
- Validate the correctness of a machine tool at set-up
- Prevent mis-labeling of parts /containers
- Prevent scrap parts from being shipped
- Prevent incorrect parts / quantities in shipments


Prevent dunnage and kitting errors – under/ over packed

2. Real-time Production Data

- For analyzing efficiency, monitoring actuals vs scheduled
- Use TouchScreen PC at line-side to view / edit
- Real-time piece counts, label status and run data
 - Automatically counts both Good and Scrap pieces
 - Automatically sends production data to your host systems

Line-side Touchscreen PC Displays Real-time
Parts Counting Data

Part Nbr Description		Run Nbr	Start	Stop	Elapsed	Scrap	Good	Containers
C729-103-0000	ACCORD M/T RADIATOR	000012001	08:03:22	12:01:10	03:57:48	11	200	40
C729-103-0000	ACCORD M/T RADIATOR	000012004	13:01:06	17:38:57	04:37:51	19	240	48
C729-103-0000	ACCORD M/T RADIATOR	000012007	18:20:07	23:30:45	05:10:38	9	260	52
					13:46:17	39	700	140
C729-101-0000	CIVIC M/T RADIATOR	000012012	07:58:26	12:10:00	04:11:34	13	180	38
C729-101-0000	CIVIC M/T RADIATOR	000012016	13:12:35	17:28:20	04:15:45	8	160	32
C729-101-0000	CIVIC M/T RADIATOR	000012017	19:00:05	23:40:10	04:40:05	11	205	41

3: Accurate Packing and Labeling

Automates the Processes of Identifying, Packing, Labeling Parts

- PLC supplies the part number / run data / count
- Counts only "good" pieces toward a pack count

Interfaces to Scales

- To Receive Accurate Piece Counts / Weights
- To trigger a container label when count/ weight is correct

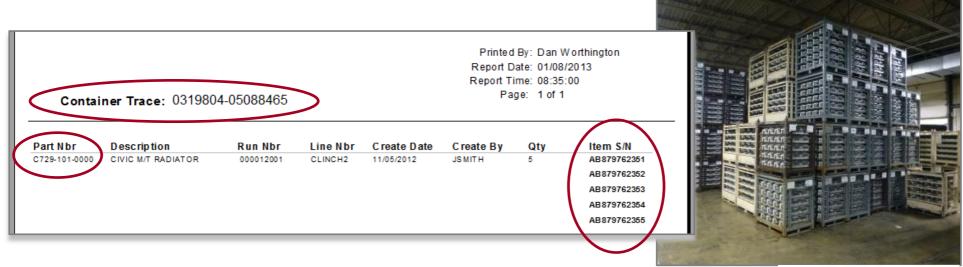
Interfaces to Vision Sensors

- To count and verify the manufactured part is "good"
- To verify dunnage layer is correct
- To verify all components are in a Kit

Prints serialized label automatically

- When pack count/dunnage is correct
- Host ERP / EDI supplies label data
- Actual weights are collected and stored with label data in SPEDE SQL label database

Prevents Mis-labeling of Parts that Look Alike



Weigh Scale Can Trigger Labels to Print

4: Automatic Traceability by Component / Part / Container

- A serial number is linked to each Part's production data:
 - o Production Machine, Run Date, Shift, Operator, Lot, Location, etc.
 - Container Serial Number(s) in which the Part was packed
 - All other Serialized Parts in a generalized Container
- Provides Traceability by Part, Lot, Container, Line, Run Date, etc.
- Forward Traceability from Production out to Customer
- Backward Traceability from Production back to Receiving, Raw Components, Supplier

4: cont'd: Serialized Traceability

- Part Serialization
 - Etching, labeling or 2D at line-side
 - Reading Part serial nbrs at each station
- Container Label Serialization
- WiFi handheld and forklift scanners can scan label at Shipping for traceability from production to Customer
- Enables focused recalls to a specific Lot / Container / Part Serial Nbr

5: Process Control and Accountability

- All SPEDE operations require the Associate to sign-in
- All transactions are retained and accessible in the SQL Txn DB

Sample Manufacuring Metrics Report

		OEE %	Earned DL Hrs	Actual DL Hrs		Labor Prdvty %	Mach. Util %	F.G. Scrap %	In-Proc. Scrap %
All Department	Total(s)	83.4%	853	1,013	(160)	84.2%	87.8%	2.0%	1.0%
Total Parts	Good Parts	Scrap Parts	Availa <u>Tim</u>		Unscheduled Down Time	Machine Hours Worked		Downtime Hours	Earned Machine Hours
28,304	27,583	721	261		20.05	229.42		66.02	223.53
Actual Man Hours	Man Hour Downtime				(S) Finished Scrap \$	(SM) Misc Scrap \$		In-Proc crap \$	Total Scrap \$
770	242				\$4,035.74	(\$59.51)	\$2,	076.35	\$6,052.58
		Utilizat	ion %	Goo	d Part %	Machine Effic	ciency %	1	Total Production \$
	OEE Factors	s: 87.8	8% *	٤	97.5% *	97.49	%		\$205,285.19

			OEE %	Earned DL Hrs	Actual DL Hrs		Labor Prdvty %	Mach. Util %	F.G. Scrap %	In-Proc. Scrap %
5515	Crank		95.2%	141	168	(27)	83.8%	82.3%	0.6%	0.2%
Total Parts		Good Parts	Scrap Parts	<u>Availat</u>		Unscheduled Down Time	Machine Hours Worked		<u>Downtime</u> Hours	Earned Machine Hours
88	5	880	5	21		2.92	17.28		6.72	20.11
Actual Hou		Man Hour Downtime		Shift Coun		(S) Finished Scrap \$	(SM) Misc Scrap \$		In-Proc crap \$	<u>Total</u> <u>Scrap \$</u>
12	1	47		3.00		\$253.62	\$0.00	\$1	08.44	\$362.06
			Utilizati	Utilization % Good Part % Machine Efficiency %		1	Total Production \$			
		OEE Factor	s: 82.3	3% *	9	99.4% *	116.4	%		\$44,890.02

Typical Production Data stored in DB:

- Part Number
- Operator Nbr
- Shift, Date, Time
- WO Nbr
- Lot Nbr
- Machine Cycles, Cycle Timestamp
- Part Count: Good, Scrap, Re-work
- Machine Stats & Metrics, etc.

6: Enables and Simplifies Honda MPR Compliance

- Pre-production
- Process Set-up
- Production / WIP
- Re-pack / Re-label
- Small Lot
- Pass thru
- Shipping
- Accountability & Traceability

Meet a Few SPEDE Customers...

T.RAD CO., Ltd.

For More Information ...

Call or Email:

Bob Bunsey

bbunsey@SPEDE.com

440-808-8888 x22

www.spede.com

Enabling Automotive Suppliers to Increase Accuracy, Efficiency and Profitability with Innovative Automated Solutions, since 1980.

Simplifying Processes.... Standardizing Excellence.

