

"Indigenous Medicine for Health Optimization"

"A Clinical Study: Modifying Nagalase With Glycome"

(Daniel F. Royal, DO, CTP, JD)

ABSTRACT

OBJECTIVE

Patients at the Turtle Healing Band Clinic ("THBC") in Las Vegas, Nevada had laboratory responses observed when treated with Glycome ("Nagalase modifier") both: (1) orally; and (2) intravenously ("IV").

SUBJECTS

THBC Patients were subjects in the study if they were found to have: (1) Elevated Epstein-Barr Virus ("EBV") Early Antigen; (2) Cancer with an elevated Anti-Malignin Antibody Serum ("AMAS") test; and/or (3) Elevated Nagalase without EBV or cancer. The study was conducted over 18 months (October 2017 to April 2019).

PROTOCOL

(1) Patients were first tested for Nagalase levels; (2) If Nagalase was found to be elevated then patients were given written instructions on how to take oral supplements¹ used to modify Nagalase;² and (3) In some cancer patients, an intravenous Nagalase modifier was used in addition to oral supplements.

RESULTS

Preliminary results for 33 patients showed: (1) 82% positive response in lowering Nagalase levels for patients who used the oral protocol for one month; (2) 56% initial increase in Nagalase from baseline³ levels for patients who received a Nagalase modifier IV; (3) 91% positive response in lowering Nagalase from baseline for patients who used the oral protocol for \geq 2 months; (4) 80% initial positive response in lowering AMAS levels from baseline Net-TAG levels in cancer patients; and (5) 100% positive lowering of AMAS levels for cancer patients who used the oral protocol for \geq 2 months.

CONCLUSION

The Naglase modifier used in this study was found to have a strong positive effect on lowering Nagalase blood levels in both viral and cancer patients as well as AMAS blood levels in cancer patients.

¹See "Nagalase Modifier".

²See "Nagalase Protocol".

³This investigator in this study believed this result to be the result of a "die-off" phenomenon as subsequent levels improved.

REFERENCES

- 1. Korbelik M, VR Naraparaju, N Yamamoto. "The value of serum alpha-N-acetylgalactosaminidase measurement for the assessment of tumor response to radio- and photodynamic therapy." <u>Br J Cancer</u>, 77:1009-1014, 1998.
- 2. Reddi AL et al. "Serum alpha-N-acetylgalactosaminidase is associated with diagnosis/prognosis of patients with squamous cell carcinoma of the uterine cervix." <u>Cancer Lett</u>, 158:61-64, 2000.
- 3. Yamamoto N and M Urade. "Pathogenic significance of alpha-N-acetylgalactosaminidase activity found in the hemagglutinin of influenza virus." <u>Microbes Infect</u>, 7:674-681, 2005.
- 4. Yamamoto N. "Pathogenic significance of alpha-N-acetylgalactosaminidase activity found in the envelope glycoprotein gp160 of human immunodeficiency virus Type I." <u>AIDS Res Hum Retroviruses</u>, 22:262-271, 2006.
- 5. Yamamoto N, H Suyama, N Yamamoto. "Immunotherapy for prostate cancer with Gc protein-derived macrophage activating factor (GcMAF)." <u>Transl Oncol</u>, 1:65-72, 2008.
- 6. Yamamoto N et al. "Therapeutic efficacy of vitamin D3-binding protein-derived macrophage activating factor for prostate, breast and colon cancers." <u>Cancer Res Proc</u>, 38:31, 1997.
- 7. Yamamoto et al. Deglycosylation of serum vitamin D3-binding protein leads to immunosuppression in cancer patients." <u>Cancer Res</u>, 56:2827-2831, 1996.