

République Du Sénégal Un Peuple — Un But — Une Foi

Ministère de l'Education nationale INSPECTION D'ACADEMIE DE SEDHIOU

CENTRE REGIONAL DE FORMATION DES PERSONNELS DE L'EDUCATION DE SEDHIOU ANNEE SCOLAIRE 2024/2025

COMPOSITION REGIONALE DU 2nd SEMESTRE EPREUVE DE SCIENCES PHYSIQUES NIVEAU TS2 / Durée : 4H

CHIMIE: (08 points)

EXERCICE 1: (03 points)

Les principaux ennemis des chauffe-eaux et des cafetières sont les dépôts calcaires, produits lors d'usage quotidien de ces appareils cela peut perturber leur fonctionnement, pour entretenir ces appareils, il est nécessaire d'enlever régulièrement ces dépôts. Plusieurs fabricants d'appareils recommandent d'utiliser un détartrant à base d'acide lactique de formule :

H₃C-CH(OH)-COOH ou (acide -2-hydropropanoique), cet acide n'est pas corrosif par rapport aux pièces métalliques contenues ces appareils.

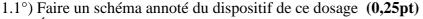
Cet exercice se propose de vérifier le pK_A du couple C₃H₆O₃ / C₃H₅O₃ par une méthode de titrage :

* Titrage de l'acide lactique dans un détartrant

Sur l'étiquette d'un détartrant commercial, on trouve les informations suivantes :

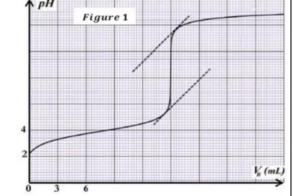
- La masse molaire de l'acide lactique : M = 90 g. mol^{-1}
- La masse volumique du détartrant commercial : $\rho = 1130$ g. L⁻¹
- Le pourcentage massique : p = 47,8%
- Le produit ionique de l'eau : $Ke = 10^{-14}$
- La constante d'acidité du couple C₃H₆O₃/ C₃H₅O₃⁻ : Ka = 10 ^{-3,9}
- Zone de virage de quelques indicateurs colorés :

L'indicateur coloré	Jaune de méthyl	Hélianthine	Rouge de crésol			
Zone de virage	2,9 - 4	3,1-4,4	7,2 - 9			


Afin de déterminer la concentration molaire C₀ de la solution (S₀) du détartrant commercial, on réalise un dosage acido-basique.

La solution de détartrant étant trop concentrée. On dilue 20 fois un volume V de la solution (S₀) pour obtenir une solution aqueuse (S_A) d'acide lactique de formule **AH** de concentration molaire C_A.

On prélève un volume V_A = 10mL de la solution (S_A) et on dose par une solution aqueuse (S_B) d'hydroxyde de sodium


 $(Na^+ + HO^-)$ de concentration $C_B = 2.10^{-1}$ mol. L^{-1} .

En suivant l'évolution du pH en fonction du volume V_B d'hydroxyde de sodium versé, les résultats obtenus permettent de tracer la courbe de dosage pH = $f(V_B)$

- 1.2°) Écrire l'équation chimique modélisant la réaction du dosage.
- 1.3°) Monter que la réaction du dosage est totale.

1.4°) Déterminer les coordonnées du point d'équivalence E.

(0,25pt) (0,5pt)

(0,5pt)

(0,25pt)

 1.5°) Parmi les indicateurs colorés indiqués dans le tableau ci-dessus, choisir celui qui conviendra le mieux à ce dosage. Justifier votre réponse. (0.25x2 = 0.5pt)

1.6°) Calculer la concentration C_A en déduire la concentration molaire C₀.

(0,25ptx2 = 0,5pt)

 1.7°) Calculer la masse m de l'acide lactique dans un volume V=1L de la solution commerciale

(0,25pt)

1.8°) Vérifier le pourcentage massique de l'acide lactique indiqué sur l'étiquette.

(0,25pt)

1.9°) On admet que le pk_A s'écrit sous la forme pk_a = pH + $\log (\frac{V_{be}}{V_b} - 1)$. En utilisant cette relation calculer

le pK_a (C₃H₆O₃ / C₃H₅O₃⁻) du couple à la demi-équivalence si $V_b = \frac{V_{be}}{2}$

(0,25pt)

Composition Régionale de Sciences Physiques du Second Semestre 152

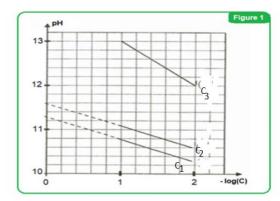
2024-2025

EXERCICE 2: (05 points)

2.1°) Soit les composés organiques A, B, C et D dont les formules semi-développées sont les suivantes :

- 2.1.1°) Préciser la fonction chimique de chacun des composés A, B, C et D et les nommer. (0,25ptx4 =1pt) On désire préparer le composé **B**, à partir de deux composés parmi ceux donnés précédemment.
- 2.1.2°) Identifier les deux composés concernés et écrire l'équation de la réaction correspondante. (0,25 pt)
- 2.1.3°) Le composé **D** est obtenu par action d'un excès d'une amine **R—NH2** sur le composé **C**. Préciser la formule semi-développée de l'amine utilisée dans cette réaction. (0,25 pt)
- 2.2°) Toutes les solutions sont prises à 25°C, température à laquelle le produit ionique de l'eau est $K_e = 10^{-14}$. On néglige les ions provenant de l'ionisation propre de l'eau.

On dispose de trois solutions aqueuses (S₁), (S₂) et (S₃) respectivement de monobases B₁, B₂ et B₃ de même concentration molaire $C_0 = 10^{-1} \text{ mol} \cdot L^{-1}$.


La mesure, dans un ordre quelconque, du **pH** de ces solutions a donné les valeurs : 13,0 ; 10,8 et 11,1. Sachant que les trois bases sont classées par ordre croissant de basicité comme l'indiqué ci-contre :

2.2.1°) Attribuer à chaque solution le pH correspondant (0,75 pt)

- Ordre croissant de la basicité (0,75pt)
- 2.2.2°) Montrer que les bases B₁ et B₂ sont faibles, alors que la base B₃ est forte.
- 2.2.3°) Ecrire l'équation bilan d'une monobase faible (B) avec l'eau (0,25pt)
- 2.2.4°) Montrer que le pH de cette solution peut s'écrire pH=7 + $\frac{1}{2}$ (pK_a + logC). (0,5pt)
- 2.5°) Pour différentes valeurs de la concentration molaire C (variant de 10⁻² à 10⁻¹ mol.L⁻¹) des solutions relatives aux trois monobases précédentes B₁ B₂ et B₃, on mesure séparément le pH correspondant, puis on représente à chaque fois la courbe pH en fonction de (-logC).

On obtient alors les courbes (C_1) , (C_2) et (C_3) de la figure 1.

- 2.5.1°) Attribuer chaque courbe à la base correspondante. (0,75 pt)
- 2.5.2°) En exploitant les courbes de la figure 1, déterminer :
- 2.5.2.1°) Les valeurs des pka₁ et pka₂ respectivement des couples
- B_1H^+/B_1 et B_2H^+/B_2
- (0,25ptx2 = 0,5 pt)
- 2.5.2.2°) Les valeurs des concentrations molaires C₁'et C₂' respectivement des solutions (S₁') et (S₂') correspondant aux bases B_1 et B_2 ayant le même pH de valeur 10,6 (0,25ptx2 = 0,5 pt)

PHYSIQUE: (12 points)

EXERCICE 3: (04 points)

Un ressort élastique de masse négligeable à spires non jointives et de raideur k est fixé en M et porte à l'extrémité un solide (S) de masse m = 100g pouvant glisser sans frottements.

3°) On tire le solide de sa position d'équilibre d'une longueur a = 5cm puis on le lâche sans vitesse initiale à la date to = 0. La durée de 10 oscillations est de 6 secondes

On donne : $\alpha = 30^{\circ}$; $g = 10 \text{ m.s}^{-2}$

- 3.1°) Calculer la période propre T_0 d'une oscillation puis la pulsation propre (0, 25ptx2 = 0, 5pt)

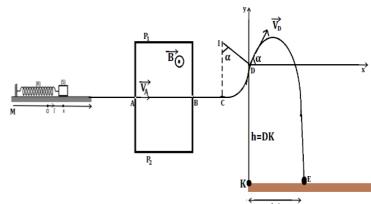
- 3.2°) En déduire la constante de raideur k du ressort. (0.25pt)
- 3.3°) Déterminer l'énergie mécanique Em₀ du système {solide + ressort} du mouvement.
- (0.25pt)
- 3.4°) Etablir l'équation différentielle de son mouvement. Une solution de cette équation peut-être cherchée sous la forme $X(t) = Xm \sin (\omega_0 t + \phi)$.
- (0.25pt)

Composition Régionale de Sciences Physiques du Second Semestre TS2

2024-2025

■M#XX■ *2/4*

 3.5°) Vérifier que $X(t) = Xm \sin(\omega_0 t + \phi)$ est solution de l'équation différentielle du mouvement de (S).(0,25pt) 3.6°) Lors de son passage en O dans le sens de $\vec{\iota}$, un système permet de séparer le solide du ressort. Le solide passe alors au point A avec la vitesse $V_A = 0.52m/s$ où il est assimilé à une particule de charge $q = -5.10^{-5}$ C. Avec la vitesse V_A , elle pénètre dans une enceinte où règne simultanément un champ électrostatique uniforme \vec{E} et un champ magnétique uniforme \vec{B} orthogonal au plan de la figure. La particule ne subit pas de déviation.


3.6.1°) Représenter dans l'enceinte les forces :

 \overrightarrow{Fe} et \overrightarrow{Fm} . (0.25ptx2 = 0,5pt)

3.6.2°) Déterminer B si $E = 10^4 \text{ V/m}$. (0.25pt)

3.7°) A la sortie du point B la particule n'est plus chargée. Le solide atteint le point C tel que BC = L=1m.

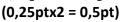
Sous l'action des forces de frottements qui équivalent à une force unique $f = 3.10^{-3} \,\mathrm{N}$ opposée au mouvement qui s'exerce uniquement sur BC. Le solide aborde enfin la partie circulaire CD de rayon $r = 5 \,\mathrm{cm}$ puis quitte

la piste en D pour atteindre un point E située sur le plan horizontal (voir figure)

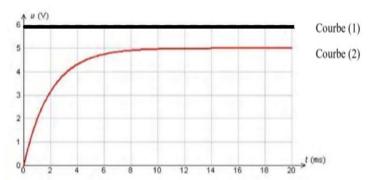
3.7.1°) Exprimer la vitesse V_D de (S) en fonction de g, r, α , f et V_B sachant que $V_A = V_B$. Faire l'application numérique (0.75pt+0.25pt)

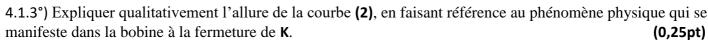
3.7.2°) Déterminer dans le repère (Dx; Dy) l'équation de la trajectoire de (S) en fonction de g, α et V_D (0,5pt) 3.7.3°) En déduire la valeur de h du solide (S) lorsqu'il est en E. (0.25pt)

EXERCICE 4: (04points)


- 4.1°) Un circuit électrique comporte en série :
 - un générateur de tension idéale de f.e.m E = 6V,
 - un interrupteur K,
 - une bobine d'inductance L et de résistance interne r et
 - un conducteur ohmique de résistance $\mathbf{R}_0 = \mathbf{100}\Omega$.

A t = 0, on ferme l'interrupteur K, un courant s'établi dans le circuit.


A l'aide d'un oscilloscope à mémoire, on visualise les courbes $U_{R_0}(t)$ aux bornes du résistor et U(t) aux bornes du générateur (voir figure1)


4.1.1°) Reproduire le circuit de la **figure1** et représenter les connexions à faire avec l'oscilloscope pour visualiser la tension $U_{R0}(t)$ aux bornes du résistor sur la voie Y_1 et la tension U(t) au bornes du générateur sur la voie Y_2 (0,25ptx2 = 0,5pt)

4.1.2°) Identifier les courbes (1) et (2).

Wahab

4.2°) Etablir l'équation différentielle vérifiée par l'intensité du courant i(t);

(0,5pt)

4.3°) Vérifier que l'expression $\mathbf{i(t)} = \mathbf{A}(\mathbf{1} - e^{-\frac{t}{\tau}})$ est solution de l'équation différentielle de $\mathbf{i(t)}$, ou A et τ sont des constantes à exprimer en fonction des paramètres du circuit. (0,25ptx3 = 0,75pt)

Composition Régionale de Sciences Physiques du Second Semestre TS2

2024-2025

3/4

4.4°) Déterminer graphiquement la valeur de τ .

- (0,25pt)
- 4.5°) Déterminer à partir de la courbe (2) la valeur U_{R0} de la tension U_{R0}(t) en régime permanent.
- 4.5.1°) En déduire la valeur de la résistance r de la bobine.

(0,25pt)

4.5.2°) Déduire la valeur de l'inductance L.

(0,25pt)

4.5.3°) Comment se comporte la bobine en régime permanent ? Justifier.

- (0,25pt)
- 4.5.4°) Exprimer à l'instant t l'énergie magnétique E_L emmagasinée par la bobine. Puis le calculer **Données:** $1u = 1,66.10^{-27} \text{ kg} = 931,5 \text{ MeV.C}^{-2}$; $1\text{MeV} = 1,6.10^{-13} \text{ J}$ $h = 6.62.10^{-34} \text{J/s}$; $N_A = 6,02.10^{23} \text{ mol}^{-1}$
- (0,5pt)

- - $E_n = -\frac{E_0}{n^2}$ où $E_0 = 13.6$ eV où $n \in IN$

On s'intéresse à l'aspect de la lumière à travers son caractère ondulatoire ou corpusculaire et à son aspect énergétique dans le cas de l'atome d'hydrogène. Une source ponctuelle S de lumière monochromatique de longueur d'onde λ

éclaire un dispositif interférentiel (dispositif de Young)

- **Données**: $S_1S_2 = a = 2 \text{ mm}$; D = 1 m; $\lambda = \lambda_1 = 0.560 \text{ }\mu\text{m}$;
- 5.1°) Qu'observe-t-on sur l'écran E dans la partie commune aux deux faisceaux issus de S₁ et S₂? (0,25pt)
- 5.2°) Expliquer brièvement les termes suivants : source monochromatique, et interfrange. (0,25ptx2=0,5pt)
- 5.3°) On choisit sur l'écran un axe orienté d'origine O. Soit un point M d'abscisse x.
- 5.3.1°) L'expression de la différence de marche au point M est $\delta = S_2M S_1M$. Exprimer la différence de marche λ en fonction de a x, et D
- 5.3.2°) Etablir l'expression de l'interfrange i et la calculer numériquement pour $\lambda_1 = 560$ nm. (0,25ptx2= 0,5pt)
- 5.4°) On veut fabriquer une cellule photoélectrique sensible à la radiation monochromatique $\lambda_1 = 0.560 \ \mu m$. On donne les longueurs d'onde seuils photo-électriques de quelques métaux:

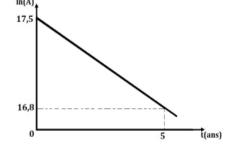
Césium : 650 nm ; sodium: 520 nm ; zinc : 370 nm ; cuivre : 290 nm.

- 5.4.1°) Quel est le métal peut-on choisir parmi ces métaux pour fabriquer la cellule photoélectrique ? (0,25pt)
- 5.5°) Une formule empirique à laquelle obéissent les longueurs d'onde d'un rayonnement émis ou absorbé dans le vide par l'atome d'hydrogène est : $\frac{1}{\lambda} = R_H(\frac{1}{n^2} - \frac{1}{m^2})$ où λ est la longueur d'onde de la radiation émise, m et n des entiers tels que m > n et $R_H = 1,097.10^7$ m⁻¹ est la constante de Rydberg.
- 5.5.1°) Démontrer la formule empirique en précisant l'expression de R_H

(0,25pt)(0,25pt)

- 5.5.2°) En déduire le niveau m ou $\lambda = 0.486 \mu m$ et n = 2
- 5.6°) Le cobalt $\binom{60}{27}$ Co) radioélément très utilisé en médecine pour le traitement du cancer.

Le cobalt ($^{60}_{27}$ Co) est radioactif β⁻


- 5.6.1°) Ecrire l'équation de la réaction de désintégration de $\binom{60}{27}$ Co) puis identifier le noyau fils.
- (Voir Extrait de la classification périodique ci-dessous)

(0,5pt)

5.6.2°) Calculer l'énergie libérée par cette désintégration

- (0,25 pt)
- 5.7°) Un centre hospitalier dispose d'un échantillon de « cobalt 60 » de masse $m_0 = 1 \mu g$.
- 5.7.1°) Calculer le nombre de noyau N_0 contenus dans l'échantillon à la date t = 0.
- (0,25pt)
- Le technicien du laboratoire est chargé de contrôler cette source, tous les ans, en déterminant son activité.
- 5.7.2°) Exprimer l'activité A (t) en fonction de A₀(activité à t = 0), λ et t
- ou $A_0 = \lambda N_0$
- (0,25pt)
- 5.7.3°) A l'aide d'un logiciel, on a tracé la courbe donnant le logarithme népérien de A en fonction du temps t, soit : $\ln A = f(t)$ (figure ci-contre) En exploitant cette courbe déterminer: (0,25ptx2=0,5pt)
- 5.7.3.1°) La constante radioactive λ du« cobalt 60 ».
- 5.7.3.2°) En déduire la période radioactive T_{1/2} du « cobalt 60 ».

Extrait de la classification périodique :

Particules	⁵⁵ ₂₅ Mn	60 27 Co	⁶⁰ Ni	$_{-1}^{0}e^{-}$
Masse en (U)	57.9353	59.930786	59.9303	0.0005486

FIN DE L'EPREUVE !!!!

BONNE CHANCE !!!!

Composition Régionale de Sciences Physiques du Second Semestre 152

2024-2025

