Cours á domicile: 77 513 63 49

République du Senegal- Ministère de l'éducation nationale IA: Pikine/Guédiawaye – IEF: Guédiawaye

Lycée Seydina Limamou Laye – Classes 1èreS2 Année scolaire 2025-2026/ Cellule de Sciences Physiques

SERIE D'EXERCICES SUR GENERALITES SUR LA CHIMIE ORGANIQUE

Exercice 1

Le cholestérol est une substance du groupe des stéroïdes qui provoque le durcissement des artères.

Déterminer sa formule brute sachant qu'il ne contient que les éléments carbone, hydrogène et oxygène, que sa composition centésimale est : %C = 83,94; %H = 11,92 et que sa molécule ne comporte qu'un seul atome d'oxygène. Les plantes contiennent parfois des bases azotées appartenant à la famille des alcaloïdes ; la nicotine est l'alcaloïde du tabac.

Déterminer sa formule brute sachant qu'elle ne contient que les éléments carbone, hydrogène et azote, que le pourcentage de carbone vaut 74,07 et que sa molécule comporte deux atomes d'azote. Sa masse molaire est égale à 162 g.mol⁻¹.

Exercice 2

On se propose de déterminer la formule brute d'une substance organique A.

Première méthode:

La combustion d'une masse m de substance organique A, de formule brute générale $C_xH_yO_z$ fourni une augmentation de masse m'de l'absorbeur à ponce sulfurique et un volume V de dioxyde de carbone.

- **1)**Montrer que la composition centésimale massique de la substance est: 40% de carbone, 6,67% d'hydrogène et 53, 33% d'oxygène.
- **2)**Sachant que la densité de vapeur de la substance est d ; trouver la formule brute de A. En déduire deux formules semidéveloppées possibles. Il n'y a pas de liaison covalence entre deux atomes d'oxygène.

Deuxième méthode:

On réalise la combustion d'un volume V_A de vapeur de la substance A.

- 3) Ecrire et équilibrer l'équation-bilan de la réaction en fonction de x, y et z.
- **4)**Le volume de dioxygène nécessaire à la combustion est V_B. L'atomicité de la molécule de A, où le nombre d'atomes de l'élément carbone est la moitié de celui de l'élément.
- **5)**Hydrogène, est 8. Retrouver la valeur de chacun des entiers x, y et z.

<u>Données</u>: m = 600 g; m' = 360 g; V = 500 L; d = 2,07; $2V_A = V_B$; $V_M = 25 L$. mol^{-1}

; M (C) = 12 g.mol^{-1} ; M (H) = 1 g.mol^{-1} ; M (0) = 16 g.mol^{-1}

Exercice 3

On considère un composé A de formule générale $C_nH_{2n}O_2$ et un autre composé B de formule générale $C_nH_{2n'+2}O$, tous deux à chaines carbonées saturées non cycliques. Le composé A possède n atomes de carbone et le composé B possède deux atomes de carbone de plus que le composé A.

- 1) Exprimer n'en fonction de n
- 2) En déduire en fonction de n les pourcentages en masse respectif d'oxygène PA et PB des composés A et B.
- 3) Sachant que $\frac{P_A}{P_B} = \frac{37}{15}$, montrer que les formules brutes de A et B sont respectivement $C_2H_4O_2$ et $C_4H_{10}O$.
- 4) Proposer une formule semi-développées possible de A et B

Exercice 4

On réalise dans un eudiomètre la combustion complète d'un volume V_1 =10cm³ d'un mélange d'un alcane non cyclique A de formule brute C_xH_y et d'un alcène B de formule brute C_xH_y . Après combustion puis refroidissement, il se forme un volume de gaz $V = 40 \text{cm}^3$, absorbable par la potasse. Les volumes sont mesures dans les mêmes conditions de température et de pression.

Les deux hydrocarbures ont le même nombre d'atomes de carbones.

- 1/ Ecrire les équation-bilans des réactions de combustion de C_xH_y et de C_xH_y.
- 2/ Déterminer le nombre d'atomes de carbone identique à ces deux hydrocarbures.

Sachant que les formules brutes de A et B s'écrivent respectivement sous la forme de C_nH_{2n+2} et de C_nH_{2n}.

Par analogie, exprimer y et y' respectivement en fonction de x. En déduire les formules brutes de ces deux hydrocarbures.

3/ Ecrire toutes les formules semi-développées possibles de B.

Exercice 5

Un liquide organique ne contient que du carbone, de l'hydrogène et du dioxygène. On en vaporise 0,018 g dans un eudiomètre contenant un excès de dioxygène. Après passage de l'étincelle électrique, on trouve que la combustion a

Cours á domicile: 77 513 63 49

nécessité 30,8 cm³ de dioxygène et donné 22,4 cm³ d'un gaz absorbable par la potasse, les volumes gazeux étant mesurés dans les C.N.T.P. La masse molaire du composé est voisine de 72 g.mol⁻¹.

- 1) Ecrire l'équation-bilan de la réaction en représentant le composé organique par la formule C_xH_yO_z.
- 2) Déterminer x, y et z. En déduire la formule brute du composé organique.

Exercice 6

PARTIE A:

Un composé organique, constitué de carbone, d'hydrogène et d'oxygène, a pour atomicité 13. Sa molécule comporte 2 fois plus d'atomes d'hydrogène que d'atomes de carbone et que sa masse molaire est voisine de 72g/mol.

- A-1/ Déterminer sa formule brute.
- A-2/ Donner toutes les formules semi-développées possibles de ce composé, sachant qu'il y'a une double liaison entre un atome de carbone et un atome d'oxygène.

PARTIE B:

On réalise dans un eudiomètre la combustion complète d'un volume V=2,5L d'un composé organique essentiellement formé de carbone, d'hydrogène et d'oxygène en présence d'un volume V_1 de dioxygène.

Après combustion et retour aux conditions initiales, le volume de gaz dans l'eudiomètre est $V_{gaz}=25,5L$. Ce volume de gaz mis en contact avec la potasse est ramené à 18L. Ces 18L sont absorbable par le phosphore.

- B-1/ On désire réaliser la synthèse de l'eau en mélangeant le volume V_1 de dioxygène avec un excès de dihydrogène. Il se forme un volume V'=56L d'eau à l'état gazeux. Calculer ce volume V_1 de dioxygène.
 - B-2/ Ecrire l'équation-bilan équilibrée de la réaction de combustion complète du compose organique.
 - B-3/ Calculer le volume de CO₂ formé ainsi que le volume de O₂ entré en réaction.
 - B-4/ En déduire la formule brute du composé, sachant que sa masse molaire est de 58g/mol.
- B-5/ Ecrire deux formules semi-développées possibles, sachant qu'il y'a une double liaison ente un atome de carbone et un atome d'oxygène. Volume molaire est $V_m=25L/mol$.

On soumet à l'analyse élémentaire 0,45g d'un composé organique azoté gazeux. Sa combustion produit 0,88g de dioxyde de carbone et 0,63g d'eau ; par ailleurs, la destruction d'une même masse de ce composé en l'absence totale d'azote conduit à la formation de 0,17g d'ammoniac.

- 1) Déterminer les masses de carbone, d'hydrogène et d'azote contenues dans les 0,45g du composé. Celui-ci contient-il de l'oxygène ? Justifier.
- 2) Quelle est la composition centésimale massique du composé?
- 3) Sachant que dans les conditions normales de température et de pression, la masse volumique du composé est voisine de 2g.L-1, calculer une valeur approchée de sa masse molaire et déterminer sa formule brute.

Données : masse volumique de l'air $\rho_{air} = 1,3g.L^{-1}$.

Exercice 7

On réalise la combustion complète dans le dioxygène, d'une masse m=37g d'un composé organique oxygéné de formule CxHyOz et de masse molaire moléculaire M=74 g.mol⁻¹.

On obtient une masse m_1 de dioxyde de carbone et une masse $m_2 = 27g$ d'eau.

On fait réagir la totalité du dioxyde de carbone formé avec de l'eau de chaux [solution saturée d'hydroxyde de calcium $Ca(OH)_2$]. Il se forme alors un précipité blanc de carbonate de calcium $CaCO_3$ et de l'eau. Le carbonate de calcium séché, pèse m=150g.

- 1- Ecrire l'équation-bilan de la réaction entre le dioxyde de carbone et l'eau de chaux. En déduire la valeur de m₁.
- 2- Ecrire l'équation-bilan de la réaction de combustion réalisée.
- 3- Déterminer x, y et z. En déduire la formule brute du composé organique étudié.

Exercice 8

On considère un composé organique B constitué des éléments carbone, hydrogène et azote. La combustion d'une masse $m_1 = 0.2500$ g de B donne une masse m' = 0.5592 g de dioxyde de carbone. La destruction d'une même masse de B, libère un volume V = 0.0952 L d'ammoniac ; volume mesuré dans les conditions normales.

- 1) Déterminer la composition centésimale massique de B
- 2) On prépare une solution basique S_B en dissolvant une masse $m_2=14,7500$ g de B dans 500 ml d'eau. On prélève 20 mL de la solution S_B , que l'on dose par une solution S_A d'acide chlorhydrique de concentration molaire $C_A=1$ mol.L⁻¹. L'équivalence est obtenue pour un volume $V_A=10$ mL de solution acide versé. Déterminer la masse molaire moléculaire de B.
- 3) Etablir la formule brute de B puis donner ses différentes formules semi développées possibles.
- 4) La molécule de B ne possède aucune liaison carbone-carbone, identifier alors la formule semi développée précise de B.