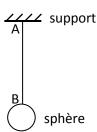


Généralités sur les forces

Exercice 1:

Indiquer, pour chaque action mécanique cités ci-dessous, si elle est localisée, répartie de contact ou répartie à distance.

- 1) Action du gaz sur la capsule d'une bouteille de limonade.
- 2) Action de l'aimant d'une porte de placard sur l'aimant fixe.
- 3) Action de la main sur une poignée de valise.
- 4) Action d'un clou sur une planche lorsqu'on la plante.
- 5) Action de l'aiguille d'une boussole sur la Terre.


Exercice 2:

Une sphère homogène de centre O, est accrochée à un fil sans masse.

- 1) Représenter en prenant une échelle arbitraire, la force exercée par le fil sur : la sphère;

le support.

Ces forces sont-elles réparties ou localisée ? Sont-elles des forces de contact ou des forces à distance?

- 2) Représenter en prenant toujours une échelle arbitraire, la force exercée sur le fil par :
 - la sphère;
 - le support.

Exercice 3:

Dans un repère $(0, \vec{i}, \vec{j})$, l'unité de force étant le newton, on donne : $\vec{F}_1 = 2\vec{i} + 3\vec{j}$ et $\vec{F}_2 = -\vec{i} - 2\vec{j}$

- Représenter F₁ et F₂.
 Calculer l'intensité de chaque force
- 3) Déterminer les angles (\vec{i} , \vec{F}_1) et (\vec{F}_1 , \vec{F}_2)
- 4) Tracer $\vec{F} = 2 \vec{F}_1 + 4 \vec{F}_2$. Déterminer graphiquement l'angle (\vec{i}, \vec{F})
- 5) Représente la force \vec{F}' telle que $\vec{F}' + \vec{F}_1 + \vec{F}_2 = \vec{0}$

Exercice 4:

Trouver la résultante des forces suivantes (méthode géométrique puis analytique) agissant sur un corps au point O. L'intensité de la force \overrightarrow{F}_1 est égale à 1200 N, celle de \overrightarrow{F}_2 à 900 N et celle de \overrightarrow{F}_3 à 300 N. Les directions et sens sont indiqués sur la figure à l'échelle : 1 cm pour 300 N.

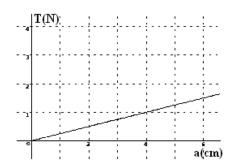
NB: Pour la détermination géométrique veuillez travailler directement sur la figure.

Exercice 5:

On exerce sur un solide, des forces \overrightarrow{F}_1 et \overrightarrow{F}_2 orthogonale dont les droites d'action se coupent en un point B. Déterminer graphiquement, puis par le calcul, la force $\overrightarrow{F} = \overrightarrow{F}_1 + \overrightarrow{F}_2$. Quel est l'angle que fait la direction de \overrightarrow{F} avec celle de \overrightarrow{F}_1 ? On donne $F_1 = 10N$, $F_2 = 20N$.

Exercice 6:

Soient deux forces \overrightarrow{F}_1 et \overrightarrow{F}_2 d'intensité $F_1 = 2$ N et $F_2 = 4$ N faisant un angle $\alpha = 120^\circ$.


- 1) Représenter \overrightarrow{F}_1 et \overrightarrow{F}_2 : échelle : 1 cm pour 1N.
- 2) Déterminer graphiquement puis par le calcul l'intensité de la force \overrightarrow{F} telle que : $\overrightarrow{F_1} + \overrightarrow{F_2} + \overrightarrow{F} = \overrightarrow{0}$
- 3) On considère deux forces \overrightarrow{F}_3 et \overrightarrow{F}_4 de même intensité et faisant un angle de β =60°. Déterminer l'intensité commune sachant que l'intensité de leur résultante \overrightarrow{F} est de 17,3N. Répondre à la question par la méthode géométrique et algébrique.

Exercice 7:

- 1) Deux forces $(A, \overrightarrow{F}_1)$ et $(A, \overrightarrow{F}_2)$ d'intensités égales, font entre elle un angle α . On donne $F_1=2$ N.
- 2) Déterminer la somme de ces deux forces pour α =0, α =60°, α =90°, α =180°.
- 3) Trois forces coplanaires (A, $\overrightarrow{F_1}$), (A, $\overrightarrow{F_2}$) et (A, $\overrightarrow{F_3}$) d'intensités égales font entre elles un angle ($\overrightarrow{F_1}$, $\overrightarrow{F_2}$)=60° et ($\overrightarrow{F_2}$, $\overrightarrow{F_3}$)=60°. Déterminer la somme de ces trois forces. On donne F_1 =4 N.

Exercice 8:

La courbe d'étalonnage $\|\overrightarrow{T}\| = f(a)$ d'un ressort à spires non jointives est représentée sur la figure ci-contre. $\|\overrightarrow{T}\|$ est la tension du ressort, a son allongement.

- 1. Calculer la raideur k du ressort.
- 2. Déduire de la courbe l'allongement a_1 du ressort lorsque la norme de la tension est $\|\overrightarrow{T}\| = 0.25 \text{ N}$.
- 3. Le ressort à spires non jointives de raideurs k a une longueur à vide ℓ_0 = 22 cm.
 - a. Calculer la longueur ℓ_1 du ressort quand la tension qu'il exerce a pour intensité $\|\overrightarrow{T}_1\| = 6,4N$
 - b. Quelle est l'intensité de la tension qu'il exerce quand sa longueur est ℓ_2 = 28,7 cm

Exercice 9:

On étudie l'allongement x d'un ressort élastique en fonction de l'intensité F de la force exercée à son extrémité. On trouve les valeurs numériques suivantes, le domaine d'élasticité du ressort étant donné par $x \le 30$ cm.

F(N)	0	1	2	3	4	5	6	7	8	9	10
x(mm)	0	26	52	80	107	133	160	186	215	240	265

- 1- Tracer la courbe T = f(x): courbe d'étalonnage du ressort.
- 2- Calculer la constante de raideur k du ressort.
- 3- Quel est l'allongement du ressort si on lui applique une force d'intensité 5,2 N ? Puis une force d'intensité 15 N ? Commenter les résultats