

République du Sénégal Ministère de l'Education nationale Inspection d'Académie de Kaffrine LYCÉE ELHADJI IBRAHIMA BA/KOUNGHEUL

Wahab

Niveau : Terminale Discipline: Sciences

Devoir n°2 du Premier semestre 2024/2025

Série : S2 Durée : $4\sin\frac{\pi}{2}$ Heures

EXERCICE 01

physiques

(05,25 points)

Les acides carboxyliques présentent une grande importance industrielle. Pour certains leurs sels de sodium ou de potassium constituent les savons courants. Par contre d'autres sont employés en parfumerie, en pharmacie...

- 1.1. On note A l'acide 2,3-diméthylbutanoïque. Ecrire la formule semi développée de A. (0,25pt)
- 1.2. Par décarboxylation de l'acide A en présence d'alumine(Al₂O₃), on obtient un composé organique B qui donne un test (+) avec la DNPH mais négatif le réactif de Schiff. Préciser, la formule semidéveloppée et le nom du composé B. (0,25pt) + (0,25pt)
- 1.3. On fait réagir sur l'acide A du pentachlorure de phosphore. On obtient, entre autres, un composé organique **D**. Ecrire l'équation de la réaction chimique produisant le composé **D**. Préciser la formule semi-développée et le nom du composé D. (0,25pt)+(0,25pt)+(0,25pt)
- 1.4. On fait agir du N-méthyléthanamine noté J sur le composé D. On obtient entre autres, un composé organique E. Ecrire l'équation de cette réaction chimique. Préciser la formule semidéveloppée et le nom du composé organique E. (0,5pt)+ (0,5pt)
- 1.5. On fait agir le composé J sur le composé A. Un composé C, intermédiaire est alors obtenu. Ecrire l'équation-bilan de la réaction correspondante. Donner le nom de C (0,75pt)
- 1.6. Ensuite la déshydratation du composé C par chauffage conduit au composé E. Comparer les réactions du composé J sur les composés A et D. (0,5pt)
- 1.7. On introduit dans un ballon sec, un volume V=10 ml d'aniline $C_6H_5NH_2$ dans un solvant approprié et on ajoute une masse m= 10,7 g du composé anhydride 2,3-diméthylbutanoïque On obtient après réaction un produit organique azoté, noté G, de masse 5,73 g.
- a- Ecrire l'équation-bilan de la réaction de synthèse du produit G. Nommer ce produit G. (0,75pt)
- b- Le mélange est-il stechiométrique ? Calculer le rendement de la synthèse du composé organique G. Données : masse volumique de l'aniline : ρ = 1,02 kg.L⁻¹.

EXERCICE 02

(2,75 points)

L'huile d'olive contient essentiellement de l'oléine qui est un triglycéride du glycérol (ou propane-1,

2,3-triol) et de l'acide oléique. La formule de l'oléine est:

CH₂ — O — CO — C₁₇H₃₃

2.1. Rappeler la formule semi-développée du glycérol.

2.2. L'oxydation ménagée complète ou totale du glycérol conduit à un

composé W. Ecrire la formule semi développée (0,25pt)2.3. Ecrire l'équation d'estérification permettant d'obtenir l'oléine et donner ses caractéristiques.

CH₂ — O — CO — C₁₇H₃₃

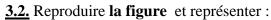
CH — O — CO — C₁₇H₃₃

2.4. On fait réagir 250kg d'oléine avec un excès de potasse (K+,OH-).

2.4.1. Ecrire l'équation-bilan de la réaction entre l'oléine et la potasse.

2.4.2. Comment se nomme cette réaction ? Préciser ses caractéristiques? (0,25pt)+ (0,25pt)

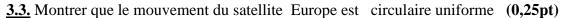
2.5. Calculer la masse de savon obtenu sachant que le rendement de la réaction est 80%. (0,5pt)


(04,5 points) **EXERCICE 03**

Les mouvements des planètes autour du soleil sont essentiellement régis par les forces gravitationnelles. Galilée commença à observer la planète Jupiter en janvier 1600 avec une lunette de sa fabrication. Il découvrit qu'autour de Jupiter tournaient « quatre lunes », auxquelles il donne le nom d'astres médicéens, ce sont quatre satellites de Jupiter : Io, Europe, Ganymède et Callisto.

Données : G : constante de gravitation = 6,67.10⁻¹¹ S.I. Masse de Jupiter :

 $M_I = 1,9.10^{27} \text{ kg}$; Rayon de Jupiter $R_I = 7,15.10^4 \text{ km}$; Période de rotation de Jupiter sur ellemême (ou rotation propre) : T_1 =35700s. Masse du satellite Europe (noté E) : m_E ; rayon de l'orbite du satellite Europe \mathbf{r}_{E} = 6,7.10⁵km ; Période de révolution du satellite Europe autour de Jupiter : $T_E = 306092,2s$ et son orbite est de rayon $r_E = R_I + h$.. On supposera que le satellite Europe n'est soumis qu'à l'influence de Jupiter.


3.1. Donner l'expression de la force de gravitation exercée par Jupiter sur le satellite Europe en fonction dem_E, M_J, R_J , h et G (0,25pt)

a- Le vecteur force \vec{F} au point **O**

(0,25pt)

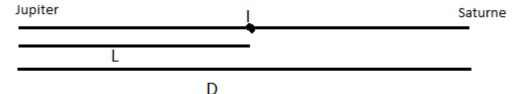
b- Les vecteurs vitesses et accélérations aux points A et B (0,25pt)

<u>a-</u>En déduire que l'expression de la vitesse Europe est indépendante de la masse me.(0,25pt)

 $\underline{\mathbf{b}}$ - En déduire l'expression la période de révolution \mathbf{T} du satellite en fonction de \mathbf{G} , $\mathbf{M}_{\mathbf{J}}$ et $\mathbf{r}_{\mathbf{E}}$

Calculer T et la comparer à la valeur donnée ; (0,25pt)+(0,25pt)+(0,25pt)

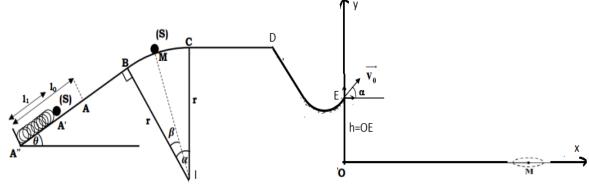
4. Par analogie avec la définition d'un satellite géostationnaire :


Définir un satellite Jupitostationnaire. Le satellite Europe est-il « Jupitostationnaire »? Justifier sans calcul à l'aide des données fournies(0,25pt)+ (0,25pt)

<u>5.</u> Saturne est également un satellite du Soleil de période T_S de révolution et de rayon d'orbite r_S . Entre les planètes (**Jupiter –Saturne**) : Donner un argument simple qui montre on peut appliquer $3^{\text{éme}}$ loi Kepler. En déduire la relation liant T_S , T_J , r_S et r_J (0,25pt)+ (0,25pt)

<u>a-</u> Sachant que $T_S = 2.483T_J$, déterminer le rayon r_S de l'orbite de Saturne en fonction du rayon r_I de l'orbite de Jupiter. Faire son application si $r_I = 7.79.10^8 \text{Km} (0.25 \text{pt}) + (0.25 \text{pt})$

<u>b-</u> Calculer la distance D séparant les centres de Jupiter-Saturne en utilisant les valeurs de \mathbf{r}_{s} et de \mathbf{r}_{l} (0,25pt)


<u>c-</u> On considère entre ces deux planètes un point I situé à une distance L par rapport au centre de Jupiter (voir figure)

Donner l'expression du champ G_J en fonction (G,M_J et L) et l'expression du champ G_S en fonction (G,M_S , D et L). Calculer L si $G_J = G_S$. On donne $M_S = 5,683.10^{26}$ kg (0,25pt)+ (0,5pt) <u>EXERCICE 04</u> (04 points)

Une piste A"BCDE est formée de trois parties :

- A''B est un plan incliné de longueur A''B faisant un angle $\theta = 30^{\circ}$ par rapport à l'horizontale. Le solide ne subit aucune force de frottement sur A''B.
- BC est un arc de cercle de centre \mathbf{I} et de rayon $\mathbf{r} = 20$ \mathbf{m} tangentiellement raccordé en B à A''B. Le solide (S) ne subit aucune force de frottement sur BC.
- CDE : CD rectiligne ; DE curviligne

Wahab

3.1 Partie A"B

A t = 0, le ressort n'est ni allongé ni comprimé, le solide (S) de masse m = 1 kg se trouve en A. La longueur initiale du ressort est $L_0 = 100$ cm et sa constante de raideur est k = 4136N.m⁻¹ .L'autre extrémité du ressort est fixé au point A''. Une personne comprime le ressort, la nouvelle position du solide est maintenant A'. La longueur du ressort devient alors $L_1 = 75$ cm.

3.1.1 La personne lâche le ressort, le solide part de A' sans vitesse initiale. Montrer que la vitesse du solide au point A est donnée par : $V_A = \sqrt{\frac{K}{m}x^2 - 2gx\sin\theta}$. Calculer V_A . (0,5pt+0,25pt)

3.1.2 Exprimer la vitesse V_B du solide (S) au point B en fonction de V_A , g, AB et θ . (0,25pt) 3.2 Partie BC

Le solide (S) aborde la partie BC avec une vitesse V, passe par le point M avec une vitesse V_{M} .

3.2.1 Exprimer la vitesse du solide (S) au point M en fonction de V_B , g, r, α et β (0,5pt)

3.2.2 En déduire que R peut se mettre sous la forme :

$$R_{M} = mg \left[3\cos(\alpha - \beta) - 2\cos\alpha - \frac{V_{B}^{2}}{rg} \right]$$
 (0,75pt)

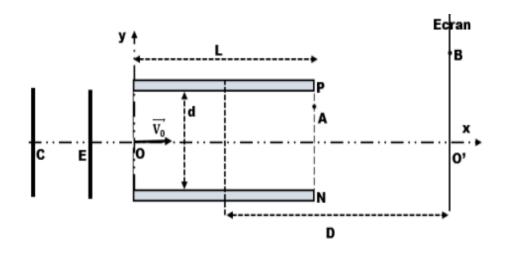
3.2.3 Trouver la vitesse V_B du solide (S) au point **B** sachant que la valeur de la réaction en **C** est $R_C = 2.823$ N. On donne $\alpha = 30^{\circ}$ (0.25pt)

3.2.4. En déduire la vitesse V_C du solide (S) au point C. (0,5pt)

3.3 Partie CDEM

En C le solide (S) poursuit son mouvement en suivant la piste CDE. Arrivée au point E avec la vitesse V_0 , le solide quitte la piste et effectue une chute libre. Le point E est situé à la hauteur h=1,55 m de l'horizontal.

<u>3.3.1.</u> Etablir l'équation cartésienne de la trajectoire du mouvement de (S) à partir de E dans le repère (O, x, y). (0.75pt)


3.3.2 Sur l'horizontale on dispose convenablement un réceptacle de centre M d'abscisse $x_M=10m$. Déterminer la valeur de la vitesse V_0 pour que le solide soit atterrit au centre du réceptacle (0.5pt)

EXERCICE 05 (03,5 points)

Dans un oscilloscope analogique, un faisceau d'électrons émis en un point \mathbf{C} , avec une vitesse initiale quasi nulle, est accéléré par une tension \mathbf{U}_0 entre les points \mathbf{C} et \mathbf{E} situés sur un axe (Ox). Puis il pénètre en O, avec une vitesse \mathbf{V}_0 , dans un champ électrique \mathbf{E}^{\rightarrow} supposé uniforme régnant entre deux plaques métalliques horizontales, parallèles et symétriques par rapport au plan xOy, de longueur

L = 20 cm et séparées par une distance d, avec $E = 5.0 \times 10^3$ V.m⁻¹.

Le champ est créé par une tension U appliquée entre ces plaques. Le faisceau sort en A de la zone où règne le champ, puis il atteint finalement l'écran de l'oscilloscope en un point B (spot lumineux). On néglige le poids de l'électron.

Wahab

4.1. Mouvement entre C et E.

- $\underline{4.1.1.}$ Quel doit être le signe de la tension accélératrice V_E - V_C ? Justifier. (0,25pt)
- **4.1.2.** Exprimer la norme V0 de la vitesse en E d'un électron en fonction de sa masse m, de sa charge q et de la tension $U_0 = V_E V_C$. (0,25pt)
- 4.1.3. Calculer V_0 . On donne $m = 9,1.10^{-31} \text{kg}$; $q = -1.6.10^{-19} \text{C}$ et $|V_E V_C| = 1000V$. (0,25pt) Pour la suite, on prendra $V_0 = 2 \cdot 10^7 \text{ m.s}^{-1}$.

4.2. Mouvement entre O et A.

Les électrons se déplacent à vitesse constante de **E** jusqu'en **O**, origine d'un repère (Ox, Oy), et se trouvant au milieu des deux armatures **P** et **N**. Ils sont déviés vers le haut puis sortent du point A.

- **4.2.1.** Déterminer les équations horaires du mouvement de l'électron entre O et A. (0,5pt)
- 4.2.3. Déterminer l'équation de la trajectoire d'un électron entre O et A. (0,25pt)
- 4.2.4. Calculer la durée du parcours entre O et A. (0,25pt)
- **4.2.5.** En déduire l'ordonnée y_A du point de sortie A et la direction du vecteur vitesse \vec{V}_A (0,75pt)
- <u>4.2.6.</u> Exprimer, en fonction de m, V_0 , d, q et L, la condition sur la tension $U = U_P U_N$ pour que les électrons sortent du champ sans heurter les plaques. (0,25pt

4.3. Mouvement entre A et B.

Cette condition étant réalisée, les électrons frappent un écran situé dans un plan $x = D + \frac{L}{2}$

- 4.3.1. Quelle est la nature du mouvement d'un électron entre A et B ? Etablir l'équation cartésienne de la trajectoire (0,25pt) +(0,25pt)
- **4.3.2.** Exprimer la déviation **O'B** du point d'impact des électrons et montrer qu'elle est indépendante des caractéristiques des électrons. (0,25pt)

FIN DU SUJET

Wahab