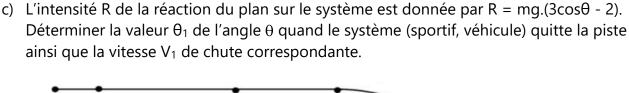
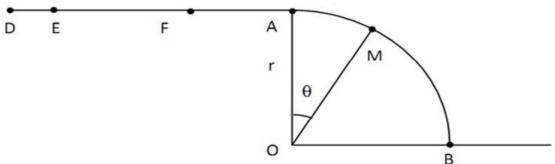
Devoir n°3 - Sciences Physiques (2 heures)

Exercice n°1: (6 points)

La masse molaire d'un hydrocarbure A est égale à 106 g/mol. Le rapport de la masse m_C des atomes de carbone qu'il contient par la masse m_H de ses atomes d'hydrogène est égal à 9,6.

- 1) Etablir la formule brute de l'hydrocarbure A.
- 2) Sachant que A comporte un noyau benzénique, écrire les formules semi-développées et les noms des isomères possibles de A.
- 3) On s'intéresse à deux isomères de A, notés A₁ et A₂ que l'on désire identifier :
 - La monobromation de l'isomère A₁ ne peut donner qu'un seul dérivé.
 - L'isomère A₂ peut être préparé à partir d'un composé B de formule C₈H₈ par hydrogénation.
 - a) Identifier le composé A₁ et écrire la formule semi-développée et le nom du dérivé monobromé.
 - b) Ecrire la formule semi-développée du composé B et identifier le composé A₂.
- 4) On réalise la nitration de A_2 en présence d'un catalyseur approprié ; la réaction conduit à la formation d'un dérivé trinité D et de l'eau.
 - a) Ecrire l'équation-bilan de cette réaction.
 - b) Donner la formule semi-développée et nom du dérivé D sachant que les groupes nitro sont à la position méta.


Exercice n°2: (7 points)


Un sportif dans son véhicule démarre sans vitesse, en D, un mouvement sur une route rectiligne horizontale. La masse totale (sportif et véhicule) est de 90 kg.

- 1) La phase de démarrage, considérée comme une translation rectiligne, a lieu sur un parcours DE d'une longueur de L=50 m. Au point E, la vitesse atteint la valeur de 5 m.s⁻¹. Le mouvement sur DE, est dû à une force motrice résultante \overrightarrow{F} , constante, parallèle au déplacement et d'une force de frottement \overrightarrow{f} constante, de norme égale au quart de la force motrice mais de sens contraire au déplacement :
 - a) Représenter sur un schéma les forces qui s'exercent sur le système (sportif, véhicule) sur le parcours DE.
 - b) En exploitant le théorème de l'énergie mécanique, déterminer l'intensité de la force de frottement. En déduire la valeur de la force motrice.
- 2) A partir du point E, le véhicule parcourt la distance EF à la vitesse constante de 5 ms⁻¹. Arrivé au point F, le sportif supprime la force motrice : le véhicule roule alors en roue libre et les frottements ont une valeur constante et égale à 7,5 N sur le parcours FA. Le véhicule parcourt la distance FA et arrive au point A avec une vitesse nulle. Déterminer la distance FA.
- 3) Le véhicule aborde en A, sans vitesse initiale, une piste AB, parfaitement polie (sans frottement), de forme circulaire et de plan vertical. Sa position M est repérée par l'angle $\theta = (\overrightarrow{OA}, \overrightarrow{OM})$.
 - a) Représenter les forces qui s'exercent sur le système au point M.
 - b) Par application de la conservation de l'énergie mécanique, exprimer la vitesse du véhicule en M en fonction de θ , r et g.

Email: leprosedieng@ism.edu.sn

Exercice n°3: (7 points)

- Un calorimètre contient une masse $m_1 = 400$ g d'eau à une température de $\theta_1 = 20$ °C; On y ajoute une masse d'eau $m_2 = 200$ q d'eau sa température est $\theta_2 = 62$ °C, à l'équilibre thermique la température se stabilise à $\theta_f = 33$ °C.
- 1) Établir l'expression de la capacité calorifique du calorimètre en fonction des données.
- 2) Calculer sa valeur. Prendre une valeur entière.
- 3) Pour porter la masse d'eau m_2 de la température $\theta_1 = 20^{\circ}$ C à la température $\theta_2 = 62^{\circ}$ C, on a utilisé un bec bunsen utilisant du butane. La quantité de chaleur reçue par l'eau représente seulement 50% de la quantité de chaleur dégagée par combustion du butane, sachant que la quantité de chaleur dégagée par combustion du butane est Q = - 2813 kJ.mol⁻¹.
 - a) Calculer la quantité de chaleur Q' que la masse d'eau a reçue pendant l'opération.
 - b) Calculer la quantité de chaleur Q' lors de la combustion du butane utilisé.
 - c) Calculer la quantité de matière n du butane utilisée, puis déduire le volume du gaz considéré parfait dans les conditions T = 300K et P = 1 atm, on donne : R = 0,082 L.atm.mol⁻¹.K⁻¹.
- II- On place dans un calorimètre de capacité calorifique $\mu = 193$ J.K⁻¹ une masse d'eau m₃ = 500 g à la température se stabilise à $\theta_3 = 23,3$ °C.
- 1) On fait sortir d'un four une masse de fer $m_4 = 200$ g à une température $\theta_4 = 98,2$ °C et on l'introduit rapidement dans le colorimètre, à l'équilibre thermique on note $\theta'_f = 26,2$ °C. Calculer la chaleur massique du fer C_{Fe}. Prendre une valeur entière.
- 2) On ajoute au calorimètre précédent un morceau de glace de masse m_q = 102 g à une température $\theta_0 = 0$ °C, finalement un nouvel état d'équilibre thermique s'établit et la température finale est $\theta''_f = 10^{\circ}$ C.
 - a) Définir la chaleur latente de fusion d'un corps pur.
 - b) Calculer la valeur de la chaleur latente de fusion de la glace L_f.

Données: $T(^{\circ}K) = \theta(^{\circ}C) + 273$; chaleur massique de l'eau $C_{eau} = C_e = 4180 \text{ J.kg}^{-1}.K^{-1}$; chaleur massique de la glace : $C_{glace} = C_{g} = 2100 J.kg .K$.

