G LYCEE SEYDINA LIMAMOULAYE GUEDIAWAYE CELLULE DE SCIENCES PHYSIQUES

TS

ANNEE SCOLAIRE 2024/2025

SERIE D'EXERCICES SUR C7 : ACIDES ET BASES FAIBLES, COUPLES ACIDE-BASE-CONSTANTE D'ACIDITE ET CLASSIFICATION DES COUPLES ACIDE-BASE

Exercice n°1:

- a) Définir ce qu'est un acide de Brönsted, une base de Brönsted. Citer quelques exemples courants.
- b) Qu'est-ce qu'un acide faible ? Ecrire l'équation-bilan de sa réaction avec l'eau.
- c) L'éthylamine ($C_2H_5NH_2$) a un p K_a = 10,7. Quelle est l'espèce chimique prédominante dans une solution de pH : 2,7 ? 10,7 ? 12,8 ?
- d) Comparer l'acidité de l'acide fluorhydrique HF ($pK_a = 3,2$) et de l'acide cyanhydrique HCN ($pK_a = 9,2$). Que dire de la basicité de leurs bases conjuguées ?
- e) Quels sont les couples de l'eau ? Quels sont les pKa associés ?
- f) Qu'est-ce qu'un indicateur coloré?
- g) Une solution aqueuse de base, de concentration $C_b = 10^{-2} \text{ mol.L}^{-1}$, a un pH = 11, 7. S'agit- il d'une base forte ou faible ?

Exercice n°2:

On prépare une solution en mettant une masse m = 0.32g de chlorure d'ammonium dans un volume V = 100 mL d'eau sans variation de volume. Le pH de la solution obtenue est pH = 5,2.

- 1/ Montrer que l'ion ammonium est un acide faible.
- 2/ Ecrire l'équation de la réaction de dissolution du chlorure d'ammonium et celle de l'ion ammonium avec l'eau.
- 3/ Calculer la concentration molaire des espèces chimiques présentes dans la solution.
- 4/ Définir la constante d'équilibre associée à l'équation de cette réaction et calculer sa valeur.
- 5/ En déduire l'espèce prédominante dans la solution (On ne tiendra pas compte des ions chlorure).

Exercice n°3:

On prélève $V_0 = 10$ mL d'une solution d'acide éthanoïque de concentration $C_0 = 10^{-2}$ mol. L^{-1} ; on ajoute un volume variable V d'eau distillée.

- 1/ Proposer un montage pour réaliser cette expérience.
- 2/ Ecrire l'équation-bilan de la réaction.
- 3/ Soit C la nouvelle concentration de la solution. Etablir la relation entre C, C₀, V₀ et V.
- 4/ On mesure le pH des solutions obtenues pour différentes valeurs de V. Compléter le tableau et tracer la courbe pH = f(-logC).

V (mL)	0	10	20	40	60	90
pН	3,37	3,52	3,61	3,72	3,80	3,87
С						
pC = -logC						

a/ Déterminer l'équation de la courbe obtenue.

b/ Mettre cette équation sous la forme : $pH = \frac{1}{2}$ (constante + pC).

En déduire la valeur de la constante d'acidité Ka de l'acide éthanoïque et son pKa.

Exercice n°4:

On considère une solution aqueuse d'acide benzoïque C6H5COOH de concentration molaire volumique $C_a=5,0.10^{-2}$ mol. L^{-1} . (On posera p $C_a=-\log C_a$ et $C_a=10^{-pCa}$). La constante d'acidité du couple $C_6H_5COOH/C_6H_5COO^-$ est $K_a=6,31.10^{-5}$.

- 1) Donner les valeurs du pKa du couple et de pCa.
- 2) En considérant que la quantité de matière d'ions OH⁻ présents est négligeable devant celle des ions H₃O⁺ d'une part et puis d'autre part Ca très grande devant [H₃O⁺], montrer que [H₃O⁺]= (K_a.C_a)

- en déduire l'expression du pH de la solution et le calculer.
- 3) Définir le degré d'ionisation α d'un acide. Le calculer pour l'acide benzoïque dans la solution.
- **4**) On considère, de façon plus générale, un acide de formule HA, de concentration molaire volumique Ca. La constante d'acidité du couple HA/A⁻ est Ka.
- a) En posant $x=[H_3O^+]$, établir l'équation $x^2 + K_3 x K_3C_3 = 0$.
- **b)** Dans le cas où la concentration est très inférieure à K_a { $(C_a/K_a) \ll 1$ }, montrer que $[H_3O^+] = C_a$ et en déduire une expression simple du pH. Que vous suggère ce résultat ?
- c) Dans le cas inverse ($(C_a/K_a) \gg 1$), montrer que pH= $\frac{1}{2}$ (pKa + pCa). Conclure.

Exercice n°5:

- 1/ On désigne par A₁H l'acide éthanoïque CH₃COOH, par A₁⁻ sa base conjuguée; A₂H l'acide chloroéthanoïque CH₂ClCOOH, par A₂⁻ sa base conjuguée; A₃H l'acide dichloroéthanoïque CHCl₂COOH, par A₃⁻ sa base conjuguée; et par A₄H l'acide trichloroéthanoïque CCl₃COOH, par A₄⁻ sa base conjuguée.
- a/ Le pH d'une solution aqueuse de A_1H de concentration molaire C_1 =0,01mol/L vaut p H_1 =3,4. Montrer par calcul que l'acide éthanoïque A_1H est un acide faible. En déduire sa constante d'acidité Ka_1 et son p Ka_1 .
- **b**/ Dans une solution aqueuse de A₃H dont le pH a pour valeur pH₃=1,3; les concentrations molaires des espèces conjuguées A₃H et A₃⁻ sont égales.
 - En déduire donc la constante d'acidité Ka₃ et le pKa₃, du couple A₃H/A₃⁻.
- c/ Dans une solution aqueuse de A₄H de pH égale à pH₄=1; le coefficient de dissociation α =67%. En déduire que l'acide A₄H est un acide faible et calculer la constante d'acidité Ka₄ et le pKa₄, du couple A₄H/A₄⁻.
- 2/ L'étude quantitative d'une solution aqueuse de A₂H montre que le pKa du couple A₂H/A₂-est égal à pKa₂=2,9.
- a/Dresser un tableau permettant de classer les 4 acides et les 4 bases conjuguées. Que remarque-t-on ?
- **b**/ Préciser l'influence sur les propriétés acides du remplacement de 1; 2 ou 3 atomes d'hydrogène du groupe méthyle (-CH₃) par 1; 2 ou 3 atomes de chlore.

Exercice n°6:

Un groupe d'élèves trouve dans le labo de chimie de leur lycée, une bouteille contenant une substance solide blanche d'acide carboxylique noté C_nH_{2n+1} — **COOH.**

1/ Détermination du pK_A du couple C_nH_{2n+1}— COOH / C_nH_{2n+1}— COO⁻:

Ils préparent une solution de cet acide carboxylique de concentration molaire $C = 6,12.10^{-2}$ mol. L^{-1} et de pH = 3 en dissolvant une masse m de l'acide dans un volume d'eau pure.

- 1.1/ Ecrire l'équation-bilan de la réaction entre l'acide carboxylique et l'eau.
- 1.2/ Calculer les concentrations des espèces chimiques présentes dans la solution.
- 1.3/ Montrer que le pK_A (C_nH_{2n+1} $COOH/C_nH_{2n+1}$ COO^-) = 4,78.

2/ Identification de l'acide carboxylique:

Afin d'identifier cet acide carboxylique, le groupe d'élèves décide de préparer une solution en dissolvant successivement des masses m_i de cet acide carboxylique de masse molaire M dans un volume V=1L d'eau pure. On négligera la variation de volume consécutive à la dissolution de cet acide carboxylique.

A l'aide d'un pH-mètre, ils mesurent les différentes valeurs du pH de la solution. Les résultats sont consignés dans le tableau ci-dessous.

pН	3,30	3,28	3,19	3,13	3,08	3,04	3,01
log (m)	-0,04	0,00	0,18	0,30	0,39	0,48	0,54

- **2.1**/ Sachant que le pH de la solution s'écrit sous la forme: $\mathbf{pH} = \frac{1}{2}(\mathbf{pK_A} \mathbf{log} \ \mathbf{C})$; déduire l'expression du pH de la solution en fonction de pK_A, m, M et V.
- 2.2/ Tracer la courbe pH = f (logm). Echelle: abscisse: 1cm pour 0,05; ordonnée: 1 cm 0,25
- **2.3**/ Montrer, à partir de la courbe, que le pH peut se mettre sous la forme: $\mathbf{pH} = \mathbf{a} \ \mathbf{logm} + \mathbf{b}$ relation où a et b sont des constantes dont on déterminera les valeurs.
- 2.4/ Déduire des questions précédentes une valeur approchée de la masse molaire M de cet acide carboxylique.
- **2.5**/ Déterminer la formule brute de l'acide carboxylique, puis en déduire sa formule semi-développée et son nom.

