

BAC 52 99

Les tables et calculatrices réglementaires sont autorisées.

EXERCICE 1 (4 points)

Les expériences sont réalisées à 25°C

On dispose d'une solution d'acide méthanoïque de concentration molaire volumique C_a = 0,100 mol.L⁻¹ et de pH = 2.4.

- 1.1- Calculer les concentrations des espèces chimiques présentes en solution. (0,5 point)
- 1.2- Cet acide est-il fort ou faible ?Justifier la réponse. Écrire l'équation-bilan de la réaction de l'acide avec l'eau. (0,5 point)
- 1.3- Donner la définition selon Bronstëd d'un acide. (0,25 point)
- <u>1.4</u>- Dans un bécher, on introduit un volume V_a = 20 mL de cette solution. On y ajoute un volume V_b d'une solution aqueuse d'hydroxyde de sodium de concentration molaire volumique C_b = 0,250 mol.L⁻¹.
 - Écrire l'équation-bilan de la réaction. (0,5 point)
 - Calculer le volume V_E d'hydroxyde de sodium qu'il faut verser pour obtenir l'équivalence acidobasique. Le pH de solution vaut alors 8,3. Justifier, simplement, le caractère basique de la solution. (0,5 point)
- <u>1.5</u>- A la demi-équivalence le pH vaut 3,8. Montrer, en utilisant les approximations habituelles que cette valeur du pH est égale à celle du p K_a du couple HCOOH/HCOO⁻. (0,5 point)
- $\underline{1.6}$ Quand V_b devient très grand, largement supérieur à V_E , quelle est, alors, la valeur limite du pH de la solution ? (0,25 point)
- <u>1.7</u>- En tenant compte des points remarquables rencontrés précédemment, tracer l'allure de la courbe de variation du pH en fonction du volume d'hydroxyde de sodium versé dans le bécher. (01 point)

EXERCICE 2 (04 points)

Les ions peroxodisulfate sont lentement réduits par les ions iodures selon l'équation-bilan :

$$S_2O_8^{2-} + 2I^- \rightarrow 2SO_4^{2-} + I_2$$
 (1)

Si on verse à l'avance une quantité de thiosulfate de sodium $Na_2S_2O_3$ dans le milieu réactionnel, il réagit avec le diiode formé selon l'équation-bilan :

$$S_2O_3^{2-} + I_2 \rightarrow 2 I^- + S_4O_6^{2-}$$

Cette réaction empêche l'apparition de la couleur brune du diiode et régénère les ions iodures instantanément. On peut déterminer, alors, le temps nécessaire pour qu'il se forme n mole(s) de diiode dans la réaction (1). On prépare pour cela une solution contenant :

- 10 mL de solution d'iodure de potassium de concentration molaire volumique 1 mol.L-1
- Assez d'eau pour considérer le volume constant.
- 2 mL de thiosulfate de sodium de même concentration molaire volumique que la solution d'iodure de potassium.

A l'instant de date t = 0, on ajoute 2mL de peroxodisulfate à 5mol.L⁻¹; à l'instant de date $t_1 = 52$ s apparaît la coloration du diiode, on ajoute alors 2 mL de thiosulfate qui fait disparaître la coloration

brune ; elle réapparaît à la date t_2 = 147 s. On ajoute encore 2 mL de solution de thiosulfate ; ainsi de suite. Ce qui permet de dresser le tableau de mesures ci-dessous :

Temps t (s)	0	52	147	246	355	494	650	852	1082	1508
n (10 ⁻³ mol.L ⁻¹)	0	1	2	3	4	5	6	7	8	9

2.1- Expliquer comment cette méthode permet d'obtenir n et tracer le graphe représentant les variations de n en fonction de t. (02 points)

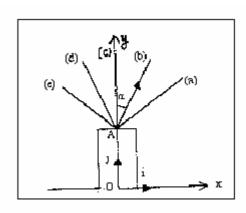
Échelles: $1 \text{ cm} \leftrightarrow 100 \text{ s}$; $1 \text{ cm} \leftrightarrow 10^{-3} \text{ mol.L}^{-1}$

<u>2.2</u>- Déterminer la vitesse de formation v du diiode au cours de la réaction (1), aux dates t = 200 s et t = 1000 s. (01 point)

Comment varie la vitesse ? Quel est le facteur cinétique qui fait varier v ? (0,5 point)

2.3- Quelle sera la quantité de diiode formé par la réaction au bout d'un temps infini ? (0,5 point)

EXERCICE 3 (4 points)


On néglige la résistance de l'air sur les gouttes d'eau ; $g = 9.81 \text{ m.s}^{-2}$.

Votre lycée ayant décidé d'installer une fontaine ornementale, il s'agit d'en déterminer les caractéristiques afin d'évaluer son encombrement spatial, à l'entrée de l'établissement. L'eau sera lancée d'un hauteur de 2 m par rapport au sol, par un ajutage* multiple, dans cinq directions formant chacune un angle α avec l'axe vertical Oy, et situées dans un même plan vertical :

On donne pour α les valeurs suivantes: -60°; -30°; 0°; +30°; +60°.

L'eau sort de chaque ajutage avec la même valeur v_o de la vitesse que l'on déterminera dans la suite.

- 3.1- Le jet vertical (c) lance l'eau à la hauteur h = 12 m par rapport au sol. Après avoir énoncé le théorème de l'énergie cinétique, déterminer v_o , vitesse de sortie de l'eau de chaque ajutage. (0,5 point)
- 3.2- Exprimer l'équation cartésienne de la trajectoire \rightarrow moyenne des gouttes d'eau éjectées en A à la vitesse v_0 formant un angle α avec l'axe Oy, dans le repère $(O, \overrightarrow{i}, \overrightarrow{j})$. (01,5 point)

- 3.3- Quel diamètre minimum devra avoir le bassin supposé circulaire, recevant l'eau des cinq jets ? (01 point)
- 3.4- Pour le jet (a) , déterminer le temps mis par une goutte d'eau pour atteindre le bassin, et donner les caractéristiques du vecteur vitesse à l'arrivée au sol . (01 point)

(On précisera, en particulier, l'angle β formé par le vecteur vitesse avec la verticale ascendante)

<u>NB</u>: Un ajutage est un orifice percé dans la paroi d'un réservoir ou d'une canalisation pour permettre l'écoulement de l'eau.

EXERCICE 4 (4 points)

Un générateur basse fréquence (GBF) délivrant une tension sinusoïdale de valeur efficace constante

U = 10,0 V, est utilisé pour alimenter un conducteur ohmique de résistance R = 100 Ω , un condensateur de capacité C = 0,5 μ F et une bobine de résistance R_b = 100 Ω et d'inductance L = 50 mH. Ces trois dipôles étant montés en série :

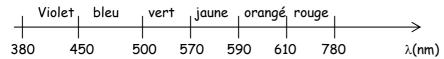
- <u>4.1</u>- Pour la fréquence $f = f_1 = 318$ Hz du GBF, calculer:
 - 4.1.1- L'impédance Z du montage . (0,5 point)
 - 4.1.2- La valeur efficace I_1 du courant i (t) débité par le GBF. (0,5 point)
 - <u>4.1.3</u>- La puissance P_1 consommée par le montage. (0,5 point)
 - $\underline{4.1.4}$ La phase ϕ de la tension u (t) délivrée par le GBF par rapport au courant i(t) qu'il débite. Préciser laquelle de ces deux grandeurs (tension ou courant) est en avance sur l'autre (0,5 point)
- $\underline{4.2}$ Pour la fréquence f_1 , tracer à l'échelle le diagramme de Fresnel du montage en utilisant les résultats des questions précédentes. (01 point)
- <u>4.3</u>- Calculer la valeur f_0 de la fréquence propre du montage. Que deviennent les différentes valeurs calculées à la question (4. 1) si on alimente le montage avec la fréquence f? Comment s'appelle le phénomène particulier qui se produit quand $f = f_0$? (01 point)

EXERCICE 5 (4 points)

$$h = 6.63 \cdot 10^{-34} \text{ J.s}$$

Les niveaux d'énergie de l'atome d'hydrogène sont donnés par la relation : $E_n = -\frac{E_0}{n^2}$

avec
$$E_0 = 13,6$$
 eV et avec $n \in IN$


L'atome d'hydrogène est dans son état fondamental.

- <u>5.1</u>- Déterminer l'énergie minimale nécessaire pour ioniser l'atome d'hydrogène. En déduire la longueur d'onde du seuil (λ_0) correspondante. **(0,5 point)**
- 5.2- a) Dire dans quel(s) cas la lumière de longueur d'onde λ_i est capable
- d'ioniser l'atome d'hydrogène (0,5 point)
- d'exciter l'atome d'hydrogène sans l'ioniser. (0,5 point)
- b) Parmi les longueurs d'onde λ_i suivantes lesquelles sont susceptibles d'ioniser l'atome? en déduire l'énergie cinétique de l'électron éjecté :

$$\lambda_1 = 88 \text{ nm}$$
; $\lambda_2 = 121 \text{ nm}$; $\lambda_3 = 146 \text{ nm}$ (0,5 point)

- c) Quelles sont les longueurs d'onde absorbables par l'atome parmi les longueurs d'onde λ_1 , λ_2 et λ_3 ? (01 point)
 - 5.3- La lumière émise par certaines nébuleuses contenant beaucoup d'hydrogène gazeux chauffé mais à basse pression, est due à la transition électronique entre les niveaux 2 et 3. Déterminer la couleur d'une telle nébuleuse. (01 point)

On donne:

FIN DU SUJET