

UNIVERSITE CHEIKH ANTA DIOP DE DAKAR

22 ♦ 22 OFFICE DU BACCALAUREAT

iléfax (221) 824 65 81 - Tél. : 824 95 92

1/2

R-19 G 18-27 B-20

Durée : 2 heures

Séries : S2-S2A – Coef. 6 Séries : S1-S3 – Coef. 8

Séries: S4-S5 - Coef. 5

Epreuve du 2ème groupe

SCIENCES PHYSIQUES

Les tables et calculatrices réglementaires sont autorisées.

QUESTION 1

Le pH d'une solution de monoacide AH de concentration molaire 0,1 mol/L est de 2,9.

- 3.1 L'acide AH est-il fort ou faible ? Justifier la réponse.
- **3.2** On désigne par C, α et K_a respectivement la concentration initiale de la solution d'acide, le degré d'ionisation et la constante d'acidité.

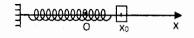
Etablir, en justifiant les approximations utilisées, la relation $C\alpha^2 + K_a \cdot \alpha - K_a = 0$.

QUESTION 2

On réalise une estérification en mélangeant un acide organique et un alcool.

- **2.1** On opère sans catalyseur. Au lieu d'utiliser un catalyseur peut-on atteindre l'équilibre le plus rapidement en agissant sur la température ? Si oui dans quel sens ? Justifier la réponse.
- 2.2 On opère sans catalyseur à température constante. Les quantités de matières initiales des réactifs ont-elles une influence sur la vitesse d'estérification ? Si oui préciser.

QUESTION 3


Le beurre est constitué essentiellement de butyrine qui est un triglycéride dont la formule semi-développée est donnée ci-contre.

$$\begin{array}{c} CH_2 - O - CO - CH_2 - CH_2 - CH_3 \\ | \\ CH - O - CO - CH_2 - CH_2 - CH_3 \\ | \\ CH_2 - O - CO - CH_2 - CH_2 - CH_3 \end{array}$$

- **3.1** Déterminer le nom et la formule de l'acide carboxylique et de l'alcool dont dérive la butyrine.
- 3.2 On fait réagir une solution de soude (Na⁺ + OH⁻) avec la butyrine. Ecrire l'équation-bilan de la réaction, la nommer et rappeler ses caractéristiques.

QUESTION 4

Un solide (S) de masse m fixé à l'une des extrémités d'un ressort à spires non jointives de raideur k, peut glisser sans frottement sur un axe horizontal (figure ci-contre). On écarte (S) de sa position d'équilibre d'une

 $longueur \ x_0 \ et \ on \ le \ lib\`ere \ sans \ vitesse \ initiale \ \grave{a} \ l'instant \ t_0, \ choisi \ comme \ origine \ des \ temps.$

On donne: m = 0.2 kg; $k = 5 \text{ N.m}^{-1}$; $x_0 = +3 \text{ cm}$.

- **4.1** Donner l'expression de l'énergie mécanique de l'oscillateur en fonction de m, v, k et x et calculer sa valeur à t = 0
- **4.2** Etablir l'équation différentielle du mouvement du solide (S) à partir de l'expression de l'énergie mécanique. En déduire la nature du mouvement.

.../... 2

SCIENCES PHYSIQUES

2/2

R-19 G 18-27 B-20

Séries : S1-S3-S2-S2A-S4-S5

Epreuve du 2ème groupe

QUESTION 5

Un satellite de masse m est en mouvement circulaire autour de la Terre de masse M.

Les expressions des énergies cinétique et potentielle de gravitation du satellite situé sur une orbite

de rayon r sont : $Ec = \frac{KmM}{2r}$ et $Ep = -\frac{KmM}{r}$; K étant la constante de gravitation universelle.

5.1 Exprimer l'énergie mécanique Em du satellite en fonction de Ec, puis en fonction de Ep.

5.2 On fournit un supplément d'energie ΔE_m positive au satellite, lui permettant ainsi d'évoluer sur une nouvelle orbite. Préciser dans quel sens varient sa vitesse et le rayon de son orbite.

QUESTION 6

Choisir la bonne réponse

<u>6.1</u> Un conducteur ohmique de résistance $R = 2 k\Omega$ est branché aux bornes d'un GBF délivrant une tension sinusoïdale d'amplitude Um = 311 V et de fréquence N = 50 Hz. L'intensité efficace du courant qui traverse le circuit est :

a) 1,5 A

b) 0,15 A

c) 0,11 A

d) 1,1 A

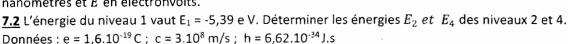
6.2 La capacité du condensateur à remplacer par ce conducteur ohmique pour avoir la même impédance est :

a) 1,6 mF

b) 1,2 μF

c) 1,6 nF

d) 1,6 μF


QUESTION 7

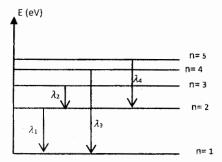
La figure ci-contre représente un diagramme simplifié des niveaux d'énergie de l'atome de lithium.

Les longueurs d'onde correspondant aux transitions représentées sur le diagramme sont :

$$\lambda_1=671 \ nm$$
 , $\lambda_2=812 \ nm$, $\lambda_3=323 \ nm$, $\lambda_4=610 \ nm$.

7.1 Montrer que l'énergie E d'un photon et sa longueur d'onde λ sont liées par la relation numérique : $E = \frac{1241}{\lambda}$ avec λ exprimée en nanomètres et E en électronvolts.

QUESTION 8


Le potassium $^{40}_{19}K$ est radioactif. Il se désintègre pour donner l'argon $^{40}_{18}Ar$.

8.1 De quelle radioactivité s'agit-il ? Ecrire l'équation de sa désintégration.

8.2 La demi-vie du nucléide $^{40}_{19}K$ est de 1,3.10 9 ans. Au bout de combien d'années l'activité d'une roche volcanique contenant ce radioélément sera-t-elle divisée par quatre ?

BAREME DE CORRECTION

Questions	Q_1	Q ₂	Q ₃	Q ₄	Q ₅	Q ₆	Q ₇	Q ₈
S ₁ - S ₃ (pts)	2	2	2	3	2,5	3	2,5	3
S ₂ -S ₄ -S ₅ (pts)	3	2	3	2,5	2	2,5	2,5	2,5

