

REPUBLIQUE DU SENEGAL UN PEUPLE-UN BUT-UNE FOI MINISTERE DE L'EDUCATION NATIONALE

INSPECTION D'ACADEMIE DE PIKINE-GUEDIAWAYE

EMAIL: iapikgue2014@gmail.com / Tél: 33 834 71 44 www.academiedepikineguediawaye.net

Evaluation standardisée Niveau: 2^{nde} S COMPOSITION PREMIER SEMESTRE

Année Scolaire: 2018/2019 (Durée: 03H)

Epreuve de SCIENCES PHSIQUES

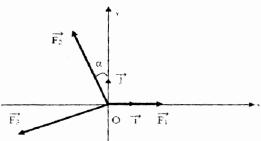
EXERCICE 1: (03,5points)

On considère deux atomes $^{A1}X_1$ et $^{A2}X_2$ appartenant au même élément chimique X. Cet élément se trouve sur la troisième ligne du tableau de la classification périodique.

- 1. Quelle est le nom de sa couche électronique externe ? (0,25pt)
- 2. A quel nombre quantique correspond cette couche ? (0,25pt)
- 3. Quel est le nombre maximal d'électrons que peut contenir cette couche. (0,25pt)
- 4. Cet élément appartient à l'avant-dernière colonne du tableau de la classification périodique.
 - 4.1 A quelle famille appartient-il? (0,25pt)
 - 4.2 Quel est le nombre d'électrons que possèdent les atomes de l'élément X sur leur couche externe ? (0,25pt)
 - 4.3 Ecrire la formule électronique des atomes de l'élément X. (0,25pt)
 - 4.4 Quel est le nom de l'élément X ? (0,25pt)
 - 4.5 donner son schéma de Lewis (0,25pt)
 - 4.6 Donner la constitution des atomes X_1 et X_2 . On donne : $A_1 = 35$ et $A_2 = 37$. (0,5pt)
 - 4.7 Comment appelle-t-on de tel type d'atomes ? (0,25pt)
- 5. L'a tome X s'ionise facilement pour donner un ion pour acquérir la structure du gaz rare qui lui est de plus proche
 - 5.1. quel est le symbole de l'ion ? (0,25pt)
 - 5.2. donner la structure du gaz rare qu'il donne et le nom. (0,5pt)

EXERCICE2: (04,5pts)

- 1) Enoncer la règle de l'octet. (0,5pt)
- 2) Définir les mots ou groupe de mots suivants : liaison covalente, molécule. (0,5 pt)
- 3) On considère les molécules suivantes : CCl₄ ; C₂HCl ; N₂H₂.
- 3.1) Donner les schémas de Lewis du carbone (Z=6), de l'hydrogène (Z=1), du chlore (Z=17) et de l'azote (Z=7). (0,25 x4pt)
- 3.2) Proposer un schéma de Lewis de chaque molécule (0,5x2pt)
- 4) Donner les formules ionique et statistique des composés dont les noms suivent :
 - Le péroxodisulfate de sodium ; (0,5pt)
 - Le dichromate d'ammonium ; (0,5pt)
- 5) Nommer les composés ioniques suivants : $KMnO_4$; $Fe_2(SO_4)_3$ (0,5pts)


On donne: ion peroxydisulfate($S_2O_8^{2-}$); ion sulfate (SO_4^{2-}); ion dichromate ($Cr_2O_7^{2-}$); ion ammonium (NH_4^+); ion hydroxide (OH); ion permanganate (MnO_4^-); ion potassium (K^+). Ion fer II (Fe^{2+})

EXERCICE 3 (06points)

On donne $F_1 = 10N$, $F_2 = F_3 = 20N$, $\alpha = 30^\circ$, $(\overrightarrow{F2}, \overrightarrow{F3}) = 90^\circ$ echelle 1cm pour 5N

- 1) Représenter à partir d'un point les vecteurs forces $\overrightarrow{F_1}$ $\overrightarrow{F_2}$ et $\overrightarrow{F_3}$ tel que $\overrightarrow{F_1}$ soit horizontale et dirigée vers la droite et $\overrightarrow{F_2}$ fait un angle $\alpha = 30^\circ$ avec la verticale vers haut et vers la gauche (0,75×3pts)
- 2) Déterminer graphiquement le vecteur force \vec{F} tel que $\vec{F} = 2 \vec{F_1} + \vec{F_2} \vec{F_3}$ (1pt)

- 3) Dans le repère $(0, \overrightarrow{1}, \overrightarrow{j})$ sont représentées sans soucis d'échelle les forces $\overrightarrow{F_1}$ $\overrightarrow{F_2}$ et $\overrightarrow{F_3}$ voir figure ci-contre.
- 3.1.Déterminer les coordonnées de chaque force. (0,75×3pts)
- 3.2.Un solide soumis à trois forces est en équilibre, si entre autre, la relation suivante est vérifiée : $\overrightarrow{F_1} + \overrightarrow{F_2} + \overrightarrow{F_3} = \overrightarrow{O}$ Cette condition est- elle vérifiée ? Justifier la réponse. (0,5pt)

EXERCICE 4 (06 points)

- 2.1-On s'estproposé lors d'une séance de travaux pratiques au laboratoire, de mesurer la masse volumique du fer à 25°C. Pour se faire, on a mesuré par déplacement d'eau le volume de quatres cylindres de fer tous pris à la température de 25°C. Le principe de mesure du volume de chaque cylindre est explicité sur la figure ci-dessous.
- **2.1.1-** Exprimer le volume V_C d'un cylindre de fer en fonction de V_1 et V_2 . (0,5 point)
- 2.1.2- Lors de la séance de manipulation, on a relevé les résultats expérimentaux regroupés dans le tableau ci-dessous.
- a- Reproduire puis remplir les deux dernières lignes du tableau ci-dessus.

(1points)

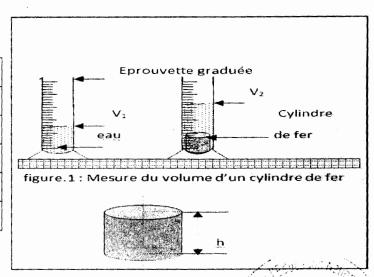
b- Déduire des résultats précédents, la masse volumique ρ_{exp} du fer à 25°C.

(0.5 point)

- 2.2- On désire maintenant déterminer par le calcul, a masse volumique $\rho_{théo}$ du fer à 25°C en utilisant la figure .2 ci-dessus.
- 2.2.1- Exprimer le volume V_C d'un cylindre de fer en fonction de h et r.

(1 point)

<u>2.2.2-</u> On donne quelques caractéristiques du cylindre de fer schématisé sur la figure.2 : $m_C = 250,0 \text{ g}$; h = 10,0 cm; r = 1,0 cm.


Calculer pthéo. Comparer à pexp.

(1,5 points)

- 2.2.3- On relève dans les tables la densité du fer à 25° C : $d_0 = 7.9$.
 - a- En déduire la masse volumique standard ρ_0 du fer. La comparer avec ρ_{exp} et $\rho_{théo}$. (0.5point)
 - b- L'expérience est-elle concluante ? Justifier par le calcul.

(1points)

N° du cylindre	1	2	3	4
Masse du cylindre m _C (g)	50	100	150	200
V ₁ (cm ³)	50,0	50,0	50,0	50,0
$V_{2}(cm^3)$	56,3	62,5	68,8	75,0
V _C (cm ³)				
Rapport m _C /V _C				

FIN DE SUJET

