

## Devoir n°1 – Sciences Physiques – 2 heures

### Exercice n°1:

1. On dispose de trois alcools A1; A2 et A3 de formules semi-développées respectives :

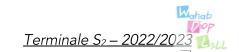
Donner le nom et la classe de chaque alcool.

- 2. On a réalisé l'oxydation ménagée de l'un des alcools précédents par une solution acidulée de permanganate de potassium (K<sup>+</sup> + MnO<sub>4</sub>), le produit formé a donné un précipité jaune avec la D.N.P.H et n'a pas réagi avec le réactif de schiff.
- a) Préciser, en le justifiant, l'alcool utilisé.
- b) Décrire la réaction et écrire l'équation (ou les équations) de la réaction (ou des réactions) qui s'est (ou qui ont été) produite(s). Donner le nom et la famille du (ou des) produit(s) formé(s).
- La déshydratation intramoléculaire de l'alcool A<sub>3</sub> a donné un composé (C).
- a) Ecrire l'équation de cette réaction en précisant ses conditions expérimentales.
- b) Donner le nom et la famille de (C)

### Exercice n°2:

Les équations paramétriques d'un mobile M se déplaçant dans le plan muni d'un repère 
$$(0, \vec{\imath}, \vec{\jmath})$$
, dans le SI sont données par : 
$$\begin{cases} x = 2t - 3 \\ y = -10t^2 + 4t + 3 \end{cases}$$

- 1) Etablir l'équation cartésienne de la trajectoire du mobile et en déduire sa nature.
- 2) Déterminer l'ordonnée maximale  $y_{max}$  atteinte par le mobile.
- Déterminer les coordonnées du vecteur vitesse et sa norme.
- Donner les coordonnées du vecteur accélération et sa norme.
- 5) Calculer la valeur de la vitesse :
  - a) A l'instant  $t_1 = 1s$ .
  - b) Lorsque le mobile passe en un point d'abscisse x = 1m.
  - c) Lorsque le mobile passe au sommet de sa trajectoire.
- 6) Déterminer les accélérations tangentielle et normale ainsi que le rayon de courbure à l'instant initial.


### Exercice n°3:

# Les mouvements étudiés sont rectilignes et rapportés au repère $(0, \vec{\iota})$ .

Un mobile  $M_1$  part sans vitesse d'un point D d'abscisse  $x_D = -25$  m à la date t = 0s. Arrivant au point E d'abscisse  $x_{\rm E}=75~{\rm m}$ , sa vitesse atteint la valeur  $V_{\rm E}=20~{\rm m/s}$  qu'il maintient constante sur le trajet EF tel que EF = 100 m, après il freine avec une décélération constante pour s'arrêter totalement au point G tel que DG = 400 m.

1) Déterminer l'accélération  $a_1$  du mobile  $M_1$  sur la partie DE.





- 2) Etablir respectivement les équations horaires :
  - a)  $x_1(t)$  du mobile  $M_1$  sur la partie DE;
  - b)  $x_2(t)$  du mobile  $M_1$  sur la partie EF.
- 3) A quelle date le mobile M<sub>1</sub> passe-t-il par le point F?
- 4) Montrer que l'équation horaire du mobile  $M_1$  sur le trajet FG est :

$$x_3(t) = -0.5t^2 + 35t - 237.5$$
 avec t en s et  $x_3$  en m.

- 5) Un mobile  $M_2$  passe par le point A d'abscisse  $x_A = 65$  m à l'instant t = 5 s animé d'un mouvement uniforme de vitesse  $V_A = 5$  m/s.
  - a) Ecrire l'équation horaire  $x_A(t)$  du mobile  $M_2$ .
  - b) Sachant que le mobile  $M_1$  dépasse le mobile  $M_2$  dans la phase où il est animé d'un mouvement uniforme. Déterminer l'instant t' de dépassement.