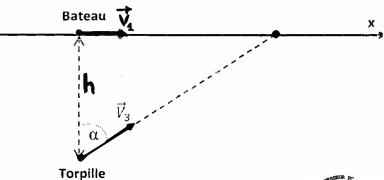
CELLULE DE SCIENCES PHYSIQUES

SECONDES SA, B, C, D et S3

8

ANNEE SCOLAIRE 2015 /2016

DUREE: 02 HEURES


DEVOIR SURVEILLE N°1/1ER SEMESTRE

EXERCICE 1 6 points

- 1. Partie 1 : Répondre par vrai ou faux :
- 1.1. A l'état solide les particules sont disposées de manière compacte
- 1.2. Lorsqu'on refroidit de l'eau glacée la température varie.
- 1.3. On peut séparer le mélange eau + huile par filtration.
- 1.4. Pour un mélange hétérogène on peut toujours distinguer les différents constituants.
- 1.5. La température de changement d'état physique varie d'un corps pur à un autre.
- 1.6. La température de vaporisation est la même que la température de liquéfaction pour un même corps pur dans les mêmes conditions.
- 2. Partie 2
- 2.1. Préciser la nette différence entre un mélange et un corps pur ?
- 2.2. A quelle conclusion conduit la synthèse eudiométrique de l'eau?
- **2.3**. Expliquer le principe de la distillation.

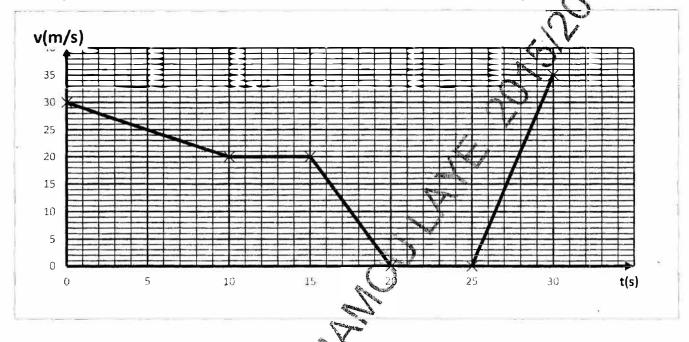
EXERCICE 2 7 points

- 1. Un bateau est animé d'un mouvement rectiligne uniforme dans un repère (o, \vec{i}) . A l'instant t = 0 s, le bateau se trouve au point M_0 d'abscisse x_0 . A l'instant $t_1 = 2$ s, le bateau passe par le point M_1 d'abscisse $x_1 = 20$ m; il arrive ensuite au point M_2 d'abscisse $x_2 = 35$ m à la date $t_2 = 5$ s.
- 1.1. Calculer la vitesse V1 du bateau
- 1.2. Etablir l'équation horaire du mouvement du bateau dans le repère (o, \vec{i}) .
- 2. A la date t=3 s une vedette se déplaçant sur la même droite avec une vitesse constant $V_2=8$ m.s⁻¹ passe par le point M d'abscisse x=10 m à la poursuite du bateau.
- 2.1. Etablir l'équation horaire du mouvement de la vedette dans le repère (o, \vec{i})
- 2.2. Déterminer la date et l'abscisse du point où la vedette rattrape le bateau.
- 2.3. Quelle est alors la distance parcourue par chaque mobile?
- 3. A la date t=10/5 un sous-marin, immobile à la profondeur h=100 m sous la surface de l'eau, tire une torpille lorsque le bateau passe juste audessus de lui. En supposant que le mouvement de la torpille est rectiligne uniforme de vecteur vitesse \vec{V}_3 faisant un angle $\alpha=60^\circ$ avec l'horizontale.
- 3.1. Trouver l'abscisse du bateau à t = 10 s.
- 3.2. Déterminer la valeur de V_3 de la vitesse V_3

CELLULE DE SCIENCES PHYSIQUES

ANNEE 2015/2016

pour que la torpille atteigne le bateau.


3.3. Déterminer alors l'instant du choc et la distance parcourue par la torpille.

Tous les mobiles sont considérés comme ponctuels.

EXERCICE 3 7 points

On étudie le mouvement d'un véhicule supposé ponctuel sur une trajectoire rectiligne. Lo la gramme suivant représente les variations de la vitesse du véhicule en fonction du temps.

- 1. Rappeler les notions de point matériel et trajectoire d'un mobile.
- **2**. Etude de la phase I : $t \in [0 \ s; 10 \ s]$
- 2.1. Comment évolue la vitesse du véhicule pour cette phase?
- 2.2. Déduire du graphe la relation numérique entre V et t.
- 2.3. Préciser la nature du mouvement
- 3. Etude la phase II : $t \in [10 \text{ s}; 15]$
- 3.1. Que peut-on dire de la vitesse du véhicule pendant cette phase?
- 3.2. Déterminer, à partir du graphique, la vitesse du véhicule et la durée de la phase Il.
- 3.3. Préciser la nature du mouvement.
- 3.4. Calculer la distance d parcourue par le véhicule au cours de cette phase.
- 4. Etude de la phase $[V, \{g\}] = [20 \text{ s}; 25 \text{ s}]$. Que peut-on dire pour cette phase?
- 5. Etude de la phase $\mathbf{v}: t \in [25 \ s; 30 \ s]$.
 - 5.1. Trouver la relation numérique entre V et t pour cette phase.
 - 5.2. L'équation horaire de l'abscisse pour cette phase est :

 $x = 3.5 \cdot t^2 - 175 \cdot t + C$. (C est une constante, x est en mètre et t en seconde)

Trouver la valeur de la constante C sachant qu'à t=20 s l'abscisse du mobile est x=200 m.

6. Quelle est la distance totale parcourue par le véhicule entre les dates t=0 et t=30 s.

L'origine des abscisses est prise à la position du véhicule à t=0 s.

FIN DU SUJET

