Premier Devoir de PC 1er semestre

Durée: 02 H

EXERCICE 1:

6points

On introduit dans un eudiomètre 70cm³ d'un mélange gazeux de dihydrogène et de dioxygène de volumes respectifs V_1 et V_2 . Après passage de l'étincelle électrique, il reste $10 \mathrm{cm}^3$ d'un gaz qui entretient la combustion.

- 1. Proposer un schéma annoté de la synthèse de l'eau.
- 2. Calculer les volumes V₁ et V₂.
- 3. Sachant que la masse m de gaz transformé est aussi celle m de l'eau formée, en déduire sa valeur.

On donne les masses volumiques de dihydrogène et de dioxygène en g L⁻¹ respectivement : ρ_1 =0,083 et : : ρ_2 =1,33.

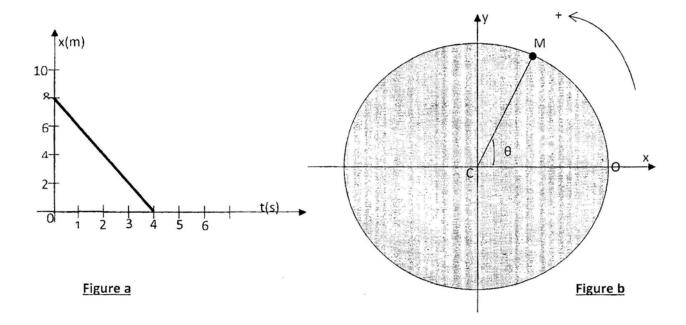
EXERCICE 2:

7 points

Le di gramme des espaces x=f(t) d'un mobile M en mouvement rectiligne est représenté ci-dessous (figure a).

- 1. A partir de l'allure du graphe, préciser la nature et le sens du mouvement.
- 2. Etablir l'équation horaire x=f(t). En déduire les conditions initiales $(t_i et x_i)$ ainsi que sa vitesse.
- 3. Un autre mobile M' passe par l'origine des espaces 2s après le départ de M en allant dans le sens inverse de celui de M avec une vitesse constante v'=72km.h⁻¹.
 - a. Etablir l'équation horaire x'=g(t) du mobile M'.
 - Représenter le diagramme des espaces de M' dans le même repère avec les mêmes échelles.
 - c. Déterminer par le calcul la date t, et la position x, de la rencontre. Retrouver ces valeurs graphiquement.

EXERCICE 3:


7points

Un disque de rayon R=20cm, effectue trois tours par minute, autour d'un axe passant son centre C.

- 1. Calculer le nombre N de tours par seconde. Que représente cette valeur ?
- En déduire sa vitesse angulaire ω.
- 2. La position quelconque d'un point M de la périphérie du disque peut être repérée par l'abscisse angulaire θ représentée ci-dessous (figure b).
- a. Sachant qu'à l'origine $t_0=0$ des instants, la position initiale est repérée par l'angle $\theta_0=\frac{\pi}{c}$ rad, établir les équations horaires de l'abscisse angulaire $\theta(t)$ et de l'abscisse curviligne s(t).
- b. Représenter le vecteur vitesse \vec{V} au point M sachant que le disque tourne dans le sens indiqué sur la Echelle: 1cm pour 2cm.s⁻¹
- 3. Une fourmis se déplace sur le disque de la périphérie vers le centre C d'un mouvement rectiligne uniforme à la vitesse V'=2cm.s⁻¹. Représenter en un point P du segment OC tel que OP=10cm;
 - a. Le vecteur vitesse \vec{V}' de la fourmis par rapport au disque.
 - b. Le vecteur vitesse \vec{V}_P du disque par rapport à son centre C.
 - c. Le vecteur vitesse \vec{V}_f de la fourmis par rapport au centre C. Calculer la norme de \vec{V}_f .
 - 4. Quelle est la forme de la trajectoire de la fourmis par rapport au centre C?

T.S.V.P.

