Année scolaire: 2018-2019 Cellules de Sciences Physiques Classe TS2

Classe 15

EXERCICE 1:

1-1/ La combustion complète d'une masse m d'un composé organique oxygéné (A) de formule générale C_xH_yO produit une masse $m_1 = 17,6$ g de dioxyde de carbone et une masse $m_2 = 9$ g d'eau.

DEVOIR N°1 DE SCIENCES PHYSIQUES DU PREMIER SEMESTRE DUREE (2HEURRES)

1-1-1/ Ecrire l'équation-bilan de la réaction de combustion complète du composé (A).

1-1-2/ Déterminer la masse molaire du composé (A), sachant que le pourcentage centésimal en masse de l'oxygène est égale à 21,62%.

1-1-3/ Déduire ensuite que la formule brute de (A) s'écrit C₄H₁₀O.

1-2/ Sachant que la molécule de (A) renferme un groupe hydroxyle, écrire toutes les formules semi développées possibles de A.

1-3/ Afin d'identifier les différents isomères de (A), on réalise des expériences dont les résultats sont les suivants:

► La déshydratation intermoléculaire d'une solution de l'isomère (a) en présence d'alumine (Al₂O₃) conduit au 1-butoxybutane.

► Les isomères (a) et (b) dérivent d'un même alcène par hydratation.

► L'oxydation ménagée de l'isomère (d) par une solution de dichromate de potassium (2K+; Cr₂O₇²-) en excès, en milieu acide, conduit à la formation d'un composé D qui n'a aucune action sur la DNPH et sur le réactif de Tollens.

Identifier chaque isomère (a), (b), (c) et (d) par son nom.

1-4/ Ecrire l'équation-bilan de la réaction permettant de passer, de l'isomère (d) au composé D en fonction des formules brutes.

Déterminer la masse m' de l'isomère (d) qui a été oxydé, sachant qu'on a utilisé un volume V = 10 cm³ de la solution de dichromate de potassium, de concentration molaire

C = 0.05 mol, en milieu acide, et qu'à la fin de la réaction il en reste 3.10⁻⁴ mol.

En déduire la masse m" du composé D, sachant que le rendement de la réaction est de 70%. 1-5/ On fait réagir le composé D avec l'isomère (c).

1-5-1/ Ecrire l'équation-bilan de la réaction, donner son nom et ses caractéristiques.

1-5-2/ Donner le nom du compose organique qui se forme.

On donne: M(H) = 1 g.mol⁻¹; M(C) = 12 g.mol⁻¹; M(O) = 16 g.mol⁻¹; $Cr_2O_7^{2-}/Cr^{3+}$

EXERCICE 2:

Un point mobile est en mouvement dans un repère $(0, \vec{i}, \vec{j})$ son vecteur vitesse est:

$$\vec{v} = a\vec{i} + (bt + c)\vec{j}$$

A la date $t_0 = 0$, le mobile passe par le point M_0 (2,0) avec la vitesse $\vec{V}_0 = \vec{i} - \vec{j}$ puis à la date

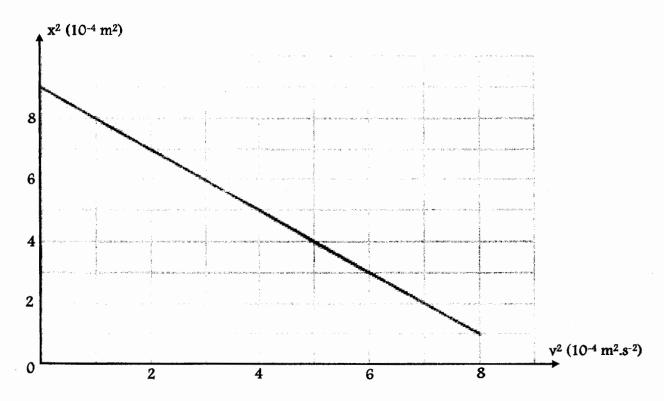
 $t_2 = 1$ s, il passe par le point M_2 (3,0) avec la vitesse $\vec{V}_2 = \vec{i} + \vec{j}$.

2-1/ Montrer que a = - c = 1 et b = 2.

2-2/ Etablir les équations horaires du mouvement du mobile. En déduire l'équation de la trajectoire.

2-3/ On considère l'instant t_1 où le vecteur vitesse du mobile est orthogonal au vecteur \vec{j} . Déterminer l'instant t_1 .

2-4/ Déterminer les valeurs des accélérations tangentielles et normales du mobile à l'instant t_1 . En déduire le rayon de courbure de la trajectoire.


- 2~5/ Déterminer l'angle α que fait le vecteur vitesse \vec{v} avec (\vec{O}, \vec{i}) lorsque le mobile passe par l'abscisse $\vec{x} = 3m$.
- 2-6/ A une date t₃ l'accélération tangentielle du mobile est de 1,79 m.s⁻¹.
- 2-6-1/ Déterminer l'accélération normale à cette date t₃.
- 2~6~2/ En déduire la date t3, sachant que le rayon de courbure à cette date est de 5,6 m.

EXERCICE 3:

Dans un repère $(\mathcal{O}, \vec{\iota})$ lié à un référentiel terrestre un mobile est animé d'un mouvement rectiligne sinusoïdal. A une date t quelconque, le centre d'inertie G du mobile a une élongation: $\mathbf{x}(t) = \mathbf{X}_{m} \cos(\omega t + \varphi)$.

A l'aide d'un dispositif approprié, on mesure l'élongations x du centre d'inertie G du mobile pour différentes vitesse instantanée v du solide (S). Les résultats des mesures ont permis de tracer la courbe $x^2 = f(v^2)$.

Les unités sont celles du système international.

- 3-1/ Par une exploitation de la courbe, donner l'expression numérique de x^2 en fonction de v^2 .
- 3-2/ Sachant que $\mathbf{v}^2 = -\mathbf{\omega}^2 \mathbf{x}^2 + \mathbf{X}_m^2 \mathbf{\omega}^2$; déduire la valeur de la pulsation ω et de l'amplitude \mathbf{X}_m du mouvement.
- 3-3/A la date t = 0, le mobile passe par l'élongation x = 1.5 cm en allant dans le sens positif.
- 3-3-1/ Déterminer la phase initiale φ du mouvement. En déduire l'expression numérique de l'élongation x(t) du mobile.
- 3-3-2/ Le mouvement à la date t = 0 est-il accéléré ou retardé?
- 3-4/ Calculer la distance L parcourue par le mobile entre les instants t_0 = 0s et t_1 = 3π s.