Premières S₁ - Année scolaire : 2023 - 2024

Devoir n°2 – Sciences Physiques – 2 heures

Exercice n°1:

Un alcane liquide note A à chaîne carbonée ramifiée a une densité par d = 0,685. La combustion complète de 73 mL de cet alcane A produit une masse de 153,488 g de dioxyde de carbone et de l'eau.

- 1) Ecrire l'équation bilan générale de la combustion de l'alcane A.
- 2) Montrer que la formule brute de l'alcane est A C₆H₁₄.
- 3) Ecrire toutes les formules semi-développées possibles pour l'alcane A puis les nommer.
- **4)** On fait réagir maintenant une masse m_A =8,600 g de l'alcane A avec du dichlore, en présence de lumière. Il se forme un composé organique note B de masse m_B = 9,640 g. Le rendement de la réaction vaut 80%.
- a) Ecrire l'équation-bilan générale de la réaction de chloration l'alcane A.
- **b)** Déterminer la masse molaire du composé B. En déduire sa formule brute.
- **c)** La chloration de l'un des isomères de l'alcane A noté A₁ donne trois produits monochlorés. Trouver la formule semi-développée exacte de l'isomère A₁ ainsi que ces trois produits mono chlorés notés B₁, B₂ et B₃. Les nommer.
- **d)** Sachant que tous les atomes d'hydrogène de la molécule de A₁ ont la même probabilité d'être substitué, déterminer la proportion de chaque isomère B₁, B₂ et B₃ de B dans le mélange de produits formés.

Exercice n°2:

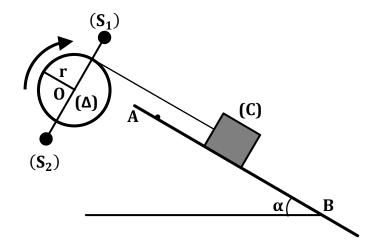
On considère le dispositif représenté sur la figure ci-dessous qui comprend :

- Une poulie homogène de rayon $\mathbf{r} = 5$ cm, de masse M dont le moment d'inertie par rapport à un axe passant par son centre d'inertie est $J_1 = \frac{1}{2} \mathbf{M} \mathbf{r}^2$.
- Une tige homogène de longueur **L= 4r** de masse $\mathbf{m} = \frac{M}{2}$, soudée à la poulie par son centre d'inertie et qui peut tourner autour de l'axe (Δ). Son moment d'inertie est $\mathbf{J}_2 = \frac{1}{12} m L^2$.
- Deux masselottes (S₁) et (S₂) supposées ponctuelles, de même masse $\mathbf{m_1} = \mathbf{m_2} = \mathbf{m} = \frac{M}{2}$, sont fixées sur la tige.

Un solide (C) de masse $\mathbf{m}_{C} = \mathbf{5} \ \mathbf{Kg}$ qui est accroché à une corde inextensible de masse négligeable et enroulée sur la gorge de la poulie sans glissement. A l'instant to = t_{A} , on abandonne le solide (C) du point A sans vitesse initiale et il passe au point B à l'instant t_{B} avec la vitesse $V_{B} = V = 1 \text{m/s}$ en parcourant la distance $\mathbf{AB} = \mathbf{d} = \mathbf{0}$, $\mathbf{6m}$.

On appelle J_{Δ} le moment d'inertie du système **{Poulie, tige et les masselottes}**.

On donne : $\alpha = 30^{\circ}$ et g = 9,8 N.Kg⁻¹. Les frottements sont négligeables.



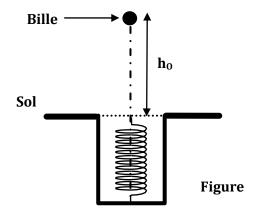
- 1) Montrer que le moment d'inertie J_{Δ} du système {Poulie, tige et les masselottes} peut se mettre sous la forme : $J_{\Delta} = \frac{31}{6} Mr^2$
- 2) En considérant le système constitué par le solide C, montrer que l'expression de l'intensité de la tension \overrightarrow{T} de la corde s'écrit: $\mathbf{T} = \mathbf{m}_{C}\mathbf{g}$ ($\mathbf{Sin}\alpha \frac{\mathbf{v}^{2}}{2\mathbf{gd}}$)
- 3) En considérant le système {Poulie, tige et les masselottes}, montrer que l'expression l'intensité de la tension \overrightarrow{T} de la corde s'écrit: $\mathbf{T} = \frac{J_{\Delta} V^2}{2dr^2}$
- **4)** Trouver l'expression du moment d'inertie J_{Δ} en fonction de mc, g, d r, V et α . Calculer J_{Δ} .
- 5) En Déduire la valeur de la masse M de la poulie.

Exercice n°3:

On néglige les frottements entre l'air et la bille. On donne g= 10 N/Kg.

Une bile, de dimensions négligeables, de masse m = 100 g est lâché sans vitesse initiale d'une hauteur ho par rapport au sol.

- 1) La bille arrive au sol avec une de V = 4 m/s. Trouver la valeur de la hauteur ho.
- 2) Lorsque la bille arrive au sol, elle rebondit. Le choc contre le sol fait perdre à la bille 20% de son énergie cinétique. Apres ce premier rebond la bille monte suivant la verticale d' une hauteur h₁ puis rebrousse chemin. Elle perd à nouveau 20% de son énergie cinétique lors de son deuxième choc avec le sol et rebondit une deuxième fois, suivant la verticale, jusqu'à une hauteur maximale h₂ puis rebrousse chemin pour se diriger vers le sol pour une troisième fois ainsi de suite.
- a) Exprimer les énergies cinétiques E_{C0} ; E_{C1} et E_{C2} de la bille respectivement en fonction de h_0 , h_1 et h_2 tout juste après le premier choc, tout juste après le deuxième choc, tout juste après le troisième choc avec le sol.
- **b)** Trouver la relation entre h_1 et ho puis entre h_2 et ho en déduire la relation entre h_n la hauteur après n chocs, ho et le nombres de chocs n. Calculer h_1 et h_2 .
- **c)** En déduire la distance totale parcourue par la bille entre l'instant de son lâché et l'instant de son arrivé pour la troisième fois au sol.
- d) Déterminer la vitesse d'arrivée V₃ de la bille pour la troisième fois au sol.
- 3) Pour éviter le troisième contact avec le sol, on a creusé un trou cylindrique vertical dans lequel on a placé un ressort de raideur k= 180 N/m. L'extrémité supérieure du ressort se trouve au niveau de la surface horizontale du sol (voir figure ci-dessous). Arrivée au niveau du sol, la bille qui a la vitesse V₃ calculée à la question 2.d), s'encastre dans la spire supérieure du ressort. Exprimer puis calculer la compression maximale Xm du ressort.



BONNE CHANCE