

Devoir n°1 – Sciences Physiques – 2 heures

Exercice n°1

Données: $M(H) = 1.0 \text{ g.mol}^{-1}$; $M(Na) = 23.0 \text{ g.mol}^{-1}$; $M(O) = 16.0 \text{ g.mol}^{-1}$.

La masse volumique de l'eau est $ho_{
m e}$ = 1000g/L

Deux élèves de terminale C, Antoine et Sophie disposent d'une solution commerciale d'un produit caustique, une solution d'hydroxyde de sodium S_0 portant les indications suivantes :

- Densité d =1,03 ; pourcentage massique en hydroxyde de sodium : μ = 16 %. Ils se proposent de doser cette solution en réalisant un suivi pH-métrique de la réaction entre l'acide (l'acide nitrique HNO₃) et cette solution.
- 1) Écris l'équation bilan de la réaction de dosage qu'ils veulent utiliser.
- 2) Sophie affirme « la concentration molaire volumique C_0 de cette solution d'hydroxyde de sodium vaut environ 4,12 mol/L ». Vérifie que Sophie dit vrai.
- 3) Antoine dit « il vaudrait mieux diluer 50 fois cette solution pour obtenir une nouvelle solution S_b avant de la doser ». Détermine la concentration C_b de la solution S_b qu'ils ont dosée.
- 4) Les élèves décident alors de vérifier cette concentration C_b en dosant un volume V_b = 100 mL de S_b par une solution S_a d'acide nitrique de concentration C_a = 0,8 mol/l. L'expérience réalisée leur a permis d'obtenir le tableau suivant :

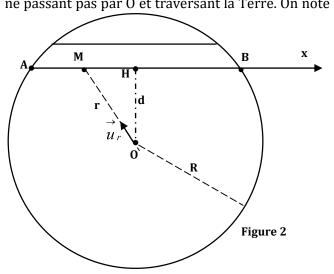
V _a (mL)	0	2,5	4	5	6,5	7	8	8,5	9	9,5	10	10,5	11	11,5
рН	12,9	12,8	12,7	12,6	12,5	12,4	12,2	12,1	12	11,7	11,3	2,7	2,3	2
V _a (mL)	12,5	14	15	16										
рН	1,8	1,6	1,5	1,4										

- a) Fais un schéma annoté du montage utilisé.
- b) Construis la courbe pH = $f(V_a)$. Échelle : 1 cm \leftrightarrow 1 mL et 1 cm \leftrightarrow 1 unité de pH.
- c) Déduis de la courbe les coordonnées et la concentration C_b de S_b.
- d) Conclus
- 5) Dans le tableau ci-dessous, se trouvent des indicateurs colorés :

Indicateurs colorés	Couleur forme acide	Zone de virage	Couleur forme basique		
Rouge de méthyle	Rouge	4,8 - 6,0	jaune		
Rouge de crésol	Jaune	7,0 - 8,8	Rouge		
Jaune brillant	Jaune	6,6 - 7,8	rouge		
Bleu de thymol	Jaune	8,0 - 9,6	Bleu		

Parmi les indicateurs ci-dessus, dis quel(s) est (sont) celui (ceux) qui pourrait (pourraient) être utilisé(s) pour le dosage de l'acide. Justifie ta réponse.

Exercice n°2


On démontre que pour tout solide M de masse m supposé ponctuel, situé à l'intérieur de la Terre à la distance \vec{F} agissant en ce point M dirigée vers le centre de la Terre :

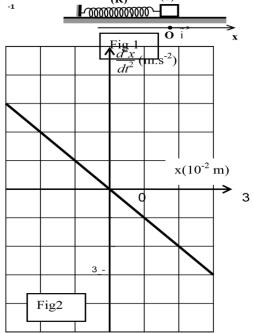
 $\overrightarrow{F} = -m.g_0.\frac{r}{R}.u_r$. \overrightarrow{u}_r est un vecteur unitaire. R est le rayon de la Terre, r = 0M et g_0 l'intensité du champ

de pesanteur terrestre à la surface de la Terre (figure)

- 1) Recopier la figure 2 et y représenter la force \vec{F} .
- 2) Trouver l'expression de l'énergie potentielle du système constitué par la Terre et le solide M en fonction de m, R, r et g_0 (en supposant que $E_p = 0$ pour r = 0).
- 3) On considère un tunnel rectiligne AB, d'axe (Hx) ne passant pas par O et traversant la Terre. On note d la distance OH du tunnel au centre de la Terre. Un véhicule assimilé à un point materiel M de masse m glisse sans frottement dans le tunnel. Il part, à l'instant de date t=0, du point A de la surface terrestre sans vitesse initiale.
 - a) Quelle est l'expression de sa vitesse maximale V_m , au cours du mouvement en fonction de R, d et g_0 ? Pour $d=5.10^6$ m calculer V_m .
 - **b)** Etablir l'équation différentielle de l'abscisse $x = \overline{HM}$ qui traduit le mouvement du point matériel M par une méthode énergétique.
 - **c)** Montrer que x peut se mettre sous la forme :

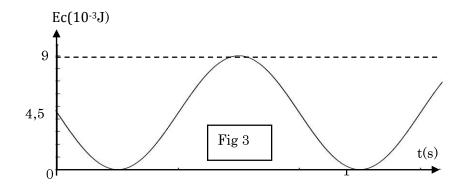
$$x = \sqrt{(R^2 - d^2)} \cdot \cos \left[\left(\sqrt{\frac{g_0}{R}} \right) \cdot t + \pi \right]$$
 puis retrouver l'expression de la vitesse maximale V_m établie à la question 2.2.3.a.

4) Représenter, en fonction de x, l'énergie potentielle de gravitation $E_p(x)$ de M. Commenter le graphe obtenu. Décrire le mouvement de M à partir de sa position initiale en A.

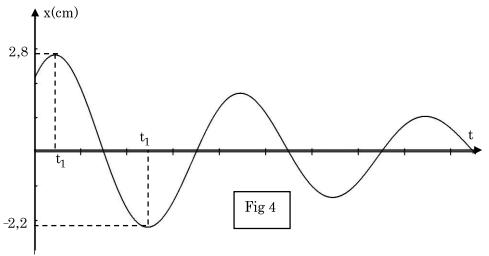

Exercice n°3

Un solide (S) de masse m est attaché à l'extrémité d'un ressort à spires non jointives de masse négligeable et de raideur **K=20 N.m**, l'autre extrémité du ressort est attachée à un

point fixe. Le système $S_0=\{(S) + \text{ressort}\}\$ est placé sur un plan horizontal **(figure 1).** Au repos, le centre d'inertie G du solide est au point O, origine d'un repère (O,\vec{i}) horizontal. A partir de O, on écarte le solide (S) d'une distance Xm dans le sens positif et on le lâche **sans vitesse**.


A- Les frottements sont négligeables.

- 1) Représenter les forces exercées sur le solide (S) en mouvement à une date t quelconque.
- 2) Etablir l'équation différentielle du mouvement et déduire l'expression de la pulsation propre ω_0 de l'oscillateur.
- 3) On donne le graphe représentant les variations de l'accélération du solide (S) en fonction de l'élongation x (figure 2). Déterminer graphiquement ω_0 . Montrer que la masse du solide est m=200g.
- 4) Au passage du solide (S) par une position d'abscisse x sa vitesse est v, donner l'expression de l'énergie mécanique totale E du système S₀ en fonction de m, v, K et x. Montrer que l'énergie E est constante puis l'exprimer en fonction de K et Xm.
- 5) On donne le graphe qui représente les variations de l'énergie cinétique Ec du solide en fonction du temps **(figure 3).** La loi horaire du mouvement est donnée par $x(t)=Xm\sin(\omega_0t+\phi)$


- a) Montrer que l'énergie cinétique Ec s'écrit sous la forme $Ec = \frac{1}{4} \text{ KX}_{m}(1 + \cos(2\omega_{0}t + 2\varphi)).$
- b) A partir du graphe, déduire les valeurs de Xm et ϕ puis écrire, en fonction du temps, la loi horaire du mouvement.

B-Les frottements ne sont plus négligeables.

Le solide (S) est maintenant soumis à une force de frottement visqueux f=-hv (h=cte>0), le graphe de **la figure 4** représente les variations de son abscisse x en fonction du temps. (les conditions initiales sont les mêmes que dans la partie A).

- 1) Etablir l'équation différentielle du mouvement de (S) en fonction de son abscisse x.
- 2) Montrer que l'énergie totale du système S₀ diminue au cours du temps.
- 3) Montrer que la variation de l'énergie totale du système S_0 est égale au travail de la force de frottement. En déduire ce travail entre les dates t_1 et t_2

