Guédiawaye - Dakar

Année scolaire: 2015-2016 Cellule de Sciences Physiques Classe: TS2

DEVOIR N°1 DE SCIENCES PHYSIQUES DU SECOND SEMESTRE DUREE (2HEURES)

EXERCICE 1: (8 points)

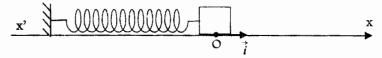
Toutes les solutions sont prises à 25°C, température à laquelle le produit ionique de l'eau pure est K_e = 10-14.

On peut lire sur l'étiquette d'une bouteille d'acide chlorhydrique: « masse volumique : 1190 kg.m⁻⁴». La solution dans la bouteille sera notée S₀.

Pour en faire une vérification, un groupe d'élèves réalisent alors les expériences suivantes :

1-1/ Le groupe extrait de cette bouteille un volume V_0 de solution, qu'ils diluent 100 fois pour obtenir une solution S_A de volume $V_A = 300$ mL et de concentration C_A .

Déterminer le volume V_0 à prélever. Décrire ensuite brièvement le mode opératoire permettant de réaliser la dilution de la solution contenu dans la bouteille et le matériel utilisé. (0,5 pt + 1pt)


- 1-2/ On prélève $V_A = 6$ mL de la solution S_A puis on effectue un dosage pH-métrique de S_A par une solution S_B de soude de concentration $C_B = 3.10^{-2}$ mol.L⁻¹. L'équivalence acido-basique est obtenue lorsqu'on a versé $V_B = 20$ mL de solution S_B .
- 1-2-1/ Faire un schéma annoté du dispositif du dosage. (1 pt)
- 1-2-2/ Ecrire l'équation de la réaction. (0,5 pt)
- 1-2-3/ Définir l'équivalence acido-basique. (0,5 pt)
- 1-2-4/ Déterminer la concentration molaire de la solution S_A . (0,5 pt)
- 1-2-5/ Déterminer concentration C_0 d'acide chlorhydrique dans la bouteille. En déduire sa masse volumique. Comparer cette valeur avec celle indiquée sur l'étiquette. Conclure. (0,5 pt \times 4)
- 1-2-6/ Donner l'allure de la courbe qui donne la variation du pH du mélange en fonction du volume de soude versé en précisant les points remarquables. (1 pt)
- 1-3/ Le dosage pH-métrique a l'inconvénient d'être long. On aurait pu aller plus vite en utilisant un indicateur coloré. Quel est celui parmi les indicateurs ci-dessous qui pourrait servir à un dosage colorimétrique Comment? repérerait-on l'équivalence? (0,5 pt x 2)

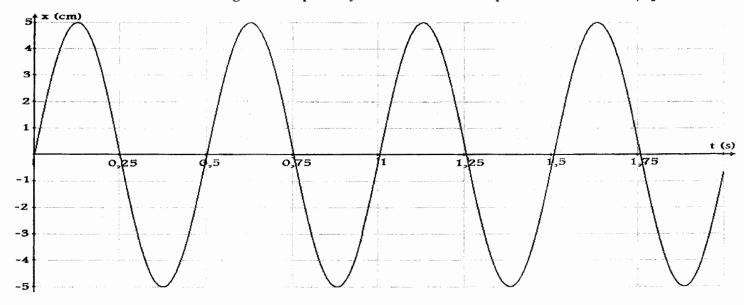
Indicateurs colorés	Zone de virage	
Hélianthine	(Rouge) 3,1 - 6,3 (Jaune)	
Bleu de Bromothymol	(Jaune) 6 - 7,6 (Bleu)	
Thymolphtaléine	(Incolore) 9,4 - 10,6 (Bleu)	

EXERCICE 2: (7 points)

On considère un pendulc élastique constitué d'un solide (S) de centre d'inertic G et de masse m, fixé à l'extrémité d'un ressort à spires non jointives de masse négligeable et de constante de raideur k. Le solide (S) peut se déplacer, sur un plan horizontal, le long de l'axe du ressort.

A l'équilibre le centre d'inertie (G) du solide (S) coïncide avec l'origine O d'un repère espace horizontal $(0,\vec{i})$.

On libère à partir de la position d'équilibre le solide (S) avec une vitesse initiale v_0 . L'instant de libération du solide est pris comme instant initial t_0 . Un dispositif permet d'enregistrer la variation de l'abscisse x en fonction du temps (courbe ci-dessous).

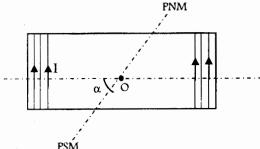

- 2-1/ Schématiser l'oscillateur à un instant t quelconque puis représenter à cet instant les forces qui s'exercent sur le solide (S). (0,75 pt)
- 2-2/ Par application du théorème du centre d'inertie, établir l'équation différentielle du mouvement. (1 pt)
- 2-3/ La solution de cette équation différentielle est de la forme $x(t) = X_m \cos(\omega_0 t + \varphi)$.

Déduire de la courbe l'expression numérique de x(t). (1,25 pt)

- 2-4/ Déterminer la valeur de la vitesse initiale vo. (0,5 pt)
- 2-5/ Donner l'expression de l'énergie cinétique du solide à un instant quelconque en fonction de m, X_m , ω_0 et t. Sachant que l'énergie cinétique du solide à l'instant t=0 est 0,025 J. Déterminer la valeur de la masse m. Quelle est la valeur de la constante de raideur k du ressort. (0,5 pt \times 3)

N° de l'oscillation	. 0	1	2	3	4
x _i (cm)	5	3,125	1,875	1,25	0,625

- 2-6-1/ Calculer la pseudo-période T de l'oscillateur amorti si trois pseudo-périodes durent 1,5s.(0,5 pt)
- 2-6-2/ Calculer l'énergie mécanique E du système à l'instant t = 0 (E₀) et au bout de la quatrième oscillation (E₄).(0,5 ptx 2)
- 2-6-3/ Calculer la variation de l'énergie mécanique du système entre t = 0 et la quatrième oscillation. (0,5 pt)



EXERCICE 3:(5 points)

Les questions 3-1/ et 3-2/ sont indépendantes

- 3-1/ Un solénoïde de longueur L=25 cm est constitué d'une couche de fil à spires jointives séparées par un isolant d'épaisseur négligeable. L'axe du solénoïde est disposé horizontalement de sorte qu'il fasse un angle $\alpha=30^\circ$ avec l'axe Sud-Nord magnétique. En un point O à l'intérieur du solénoïde, on place une aiguille aimantée mobile autour d'un axe vertical.
- 3-1-1/ Reprendre le schéma en indiquant la position stable de l'aiguille aimantée lorsqu'aucun courant ne traverse le solénoïde. (0,5 pt)
- 3-1-2/ On fait passer dans le solénoïde un courant d'intensité I de sorte que l'aiguille aimantée s'oriente perpendiculairement par rapport à l'axe du solénoïde.
- 3-1-2-1/Reprendre le schéma en indiquant les vecteurs champs magnétiques au point O et l'angle de rotation β de l'aiguille aimantée ainsi que sa position finale. (0,25 pt× 4)
- 3-1-2-2/ Déterminer l'intensité du champ magnétique crée par le courant au point O. En déduire l'intensité du courant I.(1 pt + 0,5 pt)

On donne: $B_H = 2.10^{-5} T$; $\mu_0 = 4\pi.10^{-7} SI$; nombre de spires N = 200 spires

NB: PNM signifie Pôle Nord Magnétique et PSM signifie Pôle Sud Magnétique.

- 3-2/ Une aiguille aimantée placé en un point M s'oriente suivant la direction de la composante horizontale du champ magnétique terrestre auquel elle est soumise. On place un aimant en U autour de ce point de sorte que son champ magnétique \vec{B} soit horizontal et perpendiculaire à \vec{B}_h .
- 3-2-1/ Faire un schéma (vue de dessus) en indiquant \vec{B}_h , \vec{B} , la position finale de l'aiguille aimantée et les noms des pôles de l'aimant en U.(0,25 pt× 5)
- 3-2-2/ L'aiguille aimantée dévie d'un angle $\alpha = 30^{\circ}$. Quelle est la valeur de B? (0,75 pt) On donne: BH = 0.2.10-4 T.