

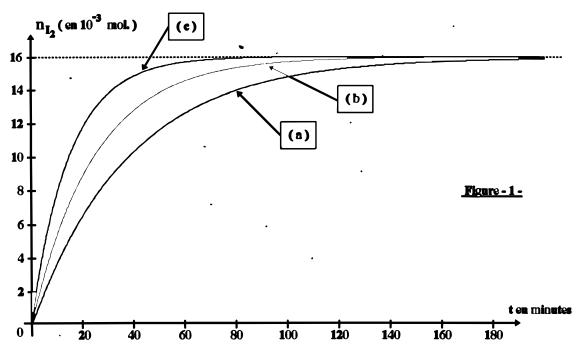
Devoir de Sciences Physiques - 4 heures

Exercice 1: (4 points)

3)

On réalise l'oxydation des ions iodures I- par l'eau oxygénée H_2O_2 en milieu acide selon la réaction totale : $2 I + H_2O_2 + 2 H_3O^+ \rightarrow I_2 + 4 H_2O$

Trois expériences sont réalisées suivant les différentes conditions expérimentales précisées dans le tableau :


Numéro de l'expérience	(1)	(2)	(3)	
Quantité de H ₂ O ₂ en 10 ⁻³ mol	X	X	X	
Quantité de I- en 10-3 mol	40	80	80	
Quantité initiale de H ₃ O ⁺	en excès	en excès	en excès	
Température du milieu réactionnel en °C	20	40	20	

A l'aide de moyens appropriés , on suit la variation du nombre de moles de diiode formé $^{\rm n}{\rm I_2}$ en fonction du temps au cours de chacune des trois expériences réalisées . Les résultats obtenus sont représentés par le graphe de la figure ci-dessous :

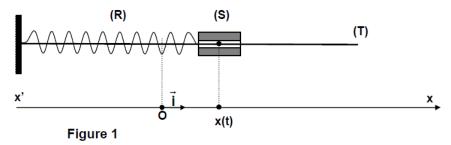
- 1) Dire, en le justifiant, si H_3O^+ joue le rôle de catalyseur ou de réactif dans chacune ces trois expériences .
- 2) Préciser, en le justifiant, la nature du réactif en défaut ; en déduire la valeur de x.
 - a) Déterminer, à partir du graphe, la vitesse moyenne de la réaction entre les instants $t_1 = 0$ min et $t_2 = 30$ min à partir de chacune des trois courbes (a), (b) et (c).
 - b) Attribuer, en le justifiant, la case qui convient à chacune des lettres a, b et c dans le tableau suivant pour désigner la courbe correspondant à chacune des trois expériences :

Numéro de l'expérience	(1)	(2)	(3)
La courbe correspondante			

4) En se plaçant dans les conditions de l'expérience où la réaction est la plus rapide, déterminer la vitesse de la réaction à la date t_3 = 40 min.

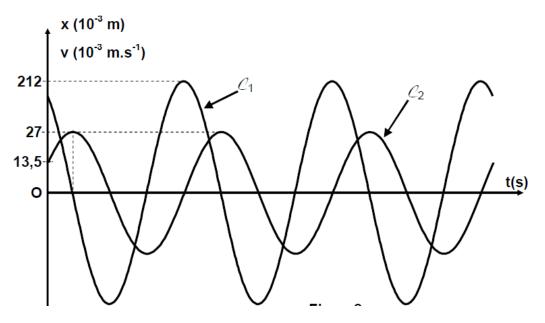
Exercice 2: (4 points)

Un détartrant pour cafetière vendu dans le commerce se présente sous la forme d'une poudre blanche, l'acide sulfamique, de formule : $H_2N \longrightarrow SO_3H$. On considérera cet acide comme un monoacide fort et on pourra le noter AH.

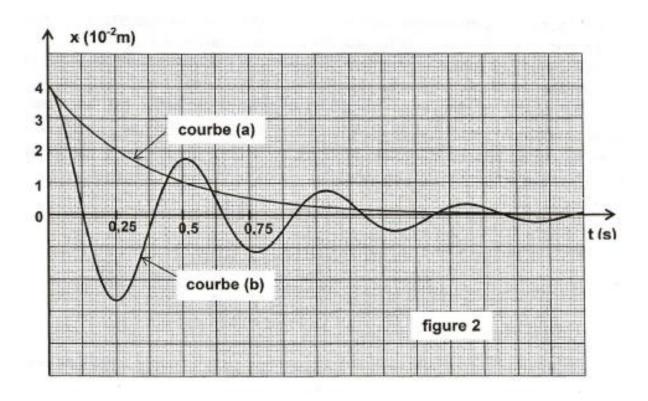

- 1) Rappeler ce qu'est un acide fort.
- 2) Ecrire l'équation-bilan de la réaction entre l'acide sulfamique et l'eau.
- 3) On dissout : $\mathbf{m} = 1,50$ g de ce détartrant dans de l'eau distillée, à l'intérieur d'une fiole jaugée de 200 mL. On complète au trait de jauge et on homogénéise la solution \mathbf{S}_a obtenue, dont la concentration molaire volumique en acide est notée \mathbf{C}_a . On dose ensuite : $\mathbf{V}_a = 20,0$ mL de la solution \mathbf{S}_a par une solution aqueuse d'hydroxyde de sodium (ou soude) de concentration molaire volumique : $\mathbf{C}_b = 0,100$ mol.L-1. La mesure su pH au cours du dosage permet d'obtenir le tableau ci-dessous:

Vb (n	nL	0	2	5	6	8	10	12	13	14	14,5	15	15,5	16	16,5	17	18
рН			1,2	1,4	1,5	1,6	1,8	2	2,2	2,5	2,7	3,2	10,9	11,3	11,6	11,7	11,9

- a) Faire un schéma annoté du montage nécessaire pour réaliser ce dosage puis représenter le graphe pH=f(Vb)
- b) Ecrire l'équation-bilan de la réaction du dosage.
- c) Donner la définition de l'équivalence d'un dosage.
- d) Déterminer la valeur numérique de la concentration Ca. Quel est le pH pour Vb=0 mL
- e) En déduire la masse d'acide sulfamique contenue dans l'échantillon dosé.
- f) Quel est le degré de pureté de la poudre commerciale?
- 4) En séance de travaux pratiques, un élève obtient un pourcentage d'acide de 105 %. Il se dit qu'il a dû commettre des erreurs de manipulation :
 - soit le détartrant n'a pas été totalement dissout lors de la préparation de la solution **S**_a;
 - soit le trait de jauge de la pipette jaugée a été nettement dépassé lors du prélèvement des 20,0 mL de la solution \mathbf{S}_{a} .
 - a) Indiquer dans quel sens chacune de ces erreurs influencerait le résultat.
 - b) Si l'on admet qu'une seule de ces erreurs est cause de l'écart, laquelle n'a pu se produire?


Exercice 3: (4,5 points)

Un pendule élastique est constitué d'un solide (S) de masse m pouvant coulisser, sans frottement, sur une tige horizontale (T). Le solide (S) est attaché à un ressort, à spires non jointives, de masse négligeable et de raideur k. La position du centre d'inertie G de (S) est repérée par son abscisse x(t) sur un axe horizontal x'Ox. L'origine O des abscisses est confondue avec la position de G lorsque (S) est à l'équilibre. Ecarté de sa position d'équilibre, puis abandonné à l'instant de date t = 0s, le solide (S) se met à osciller de part et d'autre du point O. A un instant de date t, le système est représenté comme l'indique la figure 1.



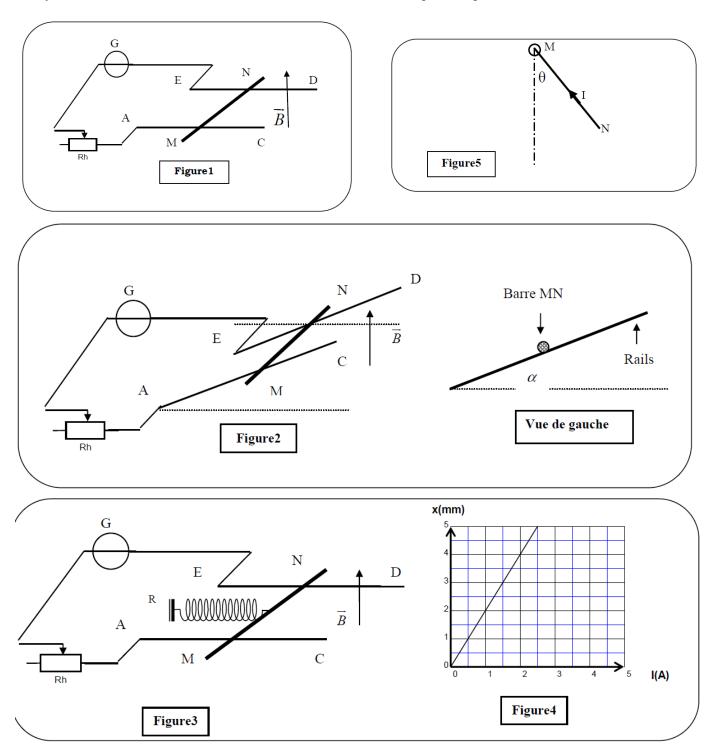
- 1) Représenter sur la figure les forces extérieures exercées sur (S) à l'instant de date t.
- 2) Etablir l'équation différentielle qui régit l'évolution de l'abscisse x(t) du centre d'inertie G. En déduire la nature de son mouvement.
- 3) A l'aide d'un dispositif approprié, on enregistre l'évolution de l'abscisse x(t) et celle de la vitesse v(t) de G. On obtient les courbes C_1 et C_2 de la figure ci-dessous.

- a) Montrer que la courbe C_1 correspond à v(t).
- b) A partir des courbes, déterminer les amplitudes respectives X_{max} et V_{max} de x(t) et de v(t). En déduire la valeur de la pulsation propre ω_0 .
- c) Déterminer la phase initiale ϕ_x de x(t).
- 4) L'énergie totale E du système {ressort+solide} est constante, E = $3,645.10^{-3}$ J.
 - a) Donner l'expression de E en fonction de k et X_{max}.
 - b) En déduire les valeurs de k et m.
- 5) Le solide (S) est maintenant soumis à une force de frottement visqueux \vec{f} =-h \vec{v} ou h est une constante positive et \vec{v} est le vecteur vitesse instantané de G. Un dispositif approprié permet d'obtenir les courbes (a) et (b) de la figure 2 traduisant l'évolution de l'élongation x(t) de G au cours du temps respectivement, pour h = h₁= 4 kg.s⁻¹ et h= h₂ = 12 kg.s⁻¹.

- a) Etablir l'équation différentielle du mouvement.
- b) Parmi les deux courbes (a) et (b), indiquer celle qui correspond au régime pseudo-périodique. Justifier la réponse.
- c) Déterminer, à partir de cette courbe, la pseudo-période T des oscillations de G.
- d) Nommer le régime correspondant à l'autre courbe, sachant que le régime critique est obtenu pour $h = h_3 = 8 \text{ kg.s}^{-1}$
- e) En justifiant la réponse, préciser, parmi les courbes (a) et (b) celle qui correspond au frottement visqueux le plus important.

Exercice 4: (3 points)

- 1) Une petite aiguille aimantée tournant librement autour d'un axe vertical est placée au centre 0 d'un long solénoïde comportant 100 spires par mètre également mobile autour d'un axe vertical passant par 0. L'axe xx' du solénoïde est initialement perpendiculaire à l'aiguille aimantée. On fait passer un courant continu d'intensité I= 0,25 A dans le solénoïde.
 - a) Déterminer le champ crée par le solénoïde.
 - b) Déterminer l'angle α dont tourne l'aiguille aimantée.
 - c) Déterminer l'angle β, dont il faut faire tourner la bobine pour que l'aiguille aimantée tourne de 90°.
- 2) Un fil de cuivre (f) de longueur L= 314m est enroulé sous forme d'un solénoïde (S) de rayon r = 5cm.
 - a) Calculer le nombre N de spires que comporte le solénoïde (S).
 - b) Le fil (f) a un diamètre d =0,5mm et les spires du solénoïde (S) sont jointives. Calculer la longueur L de ce solénoïde.
 - c) Le solénoïde (S), parcouru par un courant continu d'intensité I, est disposé de sorte que son axe (Δ) est horizontal. Une aiguille aimantée mobile autour d'un axe vertical et placée à l'intérieur du solénoïde (S), a une position d'équilibre indifférente. Déterminer la valeur de l'intensité I.


Exercice 5: (4,5 points)

Deux rails conducteurs AC et DE, parallèles et distants de L = 10 cm sont disposés dans un plan horizontal .Une tige conductrice MN, de poids P=0,087 N glisse sans frottement sur les rails en restant perpendiculaire à ces derniers. Ce dispositif plonge dans un champ magnétique uniforme \overrightarrow{B} , vertical, de module B=0,2 \mathbf{T} comme l'indique la figure 1.

- 1) On fait passer dans le circuit un courant d'intensité $I_1 = 2A$.
 - a) Sachant que la barre MN se déplace dans le sens de A vers C, déterminer le sens du courant en justifiant la réponse.
 - b) Enumérer les forces exercées sur la barre MN. Les représenter sur le schéma de la figure 1.
 - c) Déterminer les caractéristiques de la force de Laplace exercée sur la barre.
- 2) Les deux rails sont maintenant inclinés d'un angle $\alpha = 30^{\circ}$ par rapport à l'horizontale. Pour une autre intensité **l'** du courant, la barre MN se maintient en équilibre sur les rails. (**voir figure 2**).
 - a) Représenter sur la vue de gauche les forces qui s'exercent sur la barre à l'équilibre.
 - b) Exprimer F en fonction de P et α .
 - c) Déterminer I'.
- 3) Les deux rails sont de nouveau dans un plan horizontal. La barre est reliée à un ressort (R) de constante de raideur K (**voir figure 3**). On fait varier l'intensité **I** du courant en utilisant le rhéostat et on mesure l'allongement **x** du ressort pour la même intensité *B*. On trace alors la courbe **x=f(I)**. (**voir figure 4**).
 - a) Déterminer l'équation de la droite x=f(I).
 - b) Etablir l'expression de x en fonction de K, L, I et B
 - c) Déduire K.

- 4) La tige MN est isolée du montage précédent, elle est maintenant mobile autour d'un axe horizontal passant par son extrémité M.
 - La tige précédente (MN~L) est complètement plongée dans un champ magnétique uniforme \overrightarrow{B}_2 perpendiculaire au plan de la figure.
 - Lorsqu'un courant d'intensité I_2 = **1A** traverse la tige MN, elle dévie d'un angle θ =10°. Par rapport à la verticale (**voir figure 5**).
 - a) Déterminer, en le justifiant, le sens du vecteur champ magnétique \vec{B}_2
 - b) Déterminer la valeur du vecteur \vec{B}_2
 - c) Déterminer la valeur de la réaction \overrightarrow{B} de l'axe de rotation passant par M.

