Année scolaire: 2016-2017 Cellule de Sciences Physiques

Classe: TS2

DEVOIR N°2 DE SCIENCES PHYSIQUES D'U SECOND SEMESTRE DUREE (2HEURES)

EXERCICE 1: (8 points)

Un groupe d'élèves trouve dans le labo de chimie de leur lycée, une bouteille contenant une substance solide blanche d'acide carboxylique noté C_nH_{2n+1} — COOH.

1-1/ Détermination du pKA du couple C_nH_{2n+1}— COOH / C_nH_{2n+1}— COO:

Ils préparent une solution de cet acide carboxylique de concentration molaire $C = 6,12.10^{-2}$ mol.L⁻¹ et de pH = 3 en dissolvant une masse m de l'acide dans un volume d'eau pure.

1-1-1/ Ecrire l'équation-bilan de la réaction entre l'acide carboxylique et l'eau. (1 pt)

1-1-2/ Calculer les concentrations des espèces chimiques présentes dans la solution. (1 pt)

1-1-3/ Montrer que le pK_A (C_nH_{2n+1} — COOH/ C_nH_{2n+1} — COO = 4,78. (0,5 pt)

1-2/ Identification de l'acide carboxylique:

Afin d'identifier cet acide carboxylique, le groupe d'élèves décide de préparer une solution en dissolvant successivement des masses m_i de cet acide carboxylique de masse molaire M dans un volume V = 1L d'eau pure. On négligera la variation de volume consécutive à la dissolution de cet acide carboxylique.

A l'aide d'un pH-mètre, ils mesurent les différentes valeurs du pH de la solution. Les résultats sont consignés dans le tableau ci-dessous.

pН	3,30	3,28	3,19	3,13	3,08	3,04	3,01
log (m)	-0,04	0,00	0,18	0,30	0,39	0,48	0,54

1-2-1/ Sachant que le pH de la solution s'écrit sous la forme: pH = $\frac{1}{2}$ (pK_A - log C); déduire l'expression du

pH de la solution en fonction de pKA, m, M et V. (0,5 pt)

1-2-2/ Tracer la courbe pH = f (logm). (1,75 pt)

Echelle: abscisse: 1cm ----- 0,05; ordonnée: 1 cm ----- 0,25

- 1-2-3/ Montrer, à partir de la courbe, que le pH peut se mettre sous la forme: $pH = a \log m + b$ relation où a et b sont des constantes dont on déterminera les valeurs. (1,5 pt)
- 1-2-4/ Déduire des questions précédentes une valeur approchée de la masse molaire M de cet acide carboxylique. (0,75 pt)
- 1-2-5/ Déterminer la formule brute de l'acide carboxylique, puis en déduire sa formule semi-développée et son nom. (1 pt)

On donne: $Ke = 10^{-14}$; M (H) = 1 g.mol⁻¹; M (C) = 12 g.mol⁻¹; M (O) = 16 g.mol⁻¹

EXERCICE 2: (7,5 points)

Le poids d'un ion est négligeable devant la force électrique et la force magnétique et les vitesses sont faibles devant la célérité de la lumière.

Des ions isotopes du zinc ($^{A1}Zn^{2+}$ et $^{A2}Zn^{2+}$ du zinc), de masses respectives m_1 et m_2 sont produits dans une chambre d'ionisation (1). Ces ions sont ensuite accélérés entre deux plaques métalliques P_1 et P_2 verticales et parallèles. La tension accélératrice entre les plaques P_1 et P_2 est $U_0 = V_{P2} - V_{P1}$.

On suppose que les ions sortent de la chambre d'ionisation en O1 avec une vitesse négligeable.

2-1/ Accélération des ions: chambre (2)

 $\overline{2-1-1/\text{ Indiquer}}$, en le justifiant, le signe de $U_0 = V_{P2} - V_{P1}$. (0,5 pt)

- 2-1-2/ Si v₁ et v₂ désignent respectivement les vitesses en O₂ des deux types d'ions ^{A1}Zn²⁺ et ^{A2}Zn²⁺ du zinc, donner la relation entre v₁, v₂, m₁ et m₂. (0,5 pt)
- 2-1-3/ Le rapport $\frac{m_1}{m_2}$ = 1,05; en déduire la valeur de v₁, sachant que v₂ = 1,55.10⁵ m.s⁻¹. (0,5 pt)

2-2/ Filtre de vitesses: chambre (3)

Arrivés en O2, les ions pénètrent dans la chambre (3) constitué par:

- \blacktriangleright deux plaques horizontales R et Q séparées d'une distance d=10,00 cm et entre lesquelles on établit une différence de potentiel $U=V_R-V_Q$.
- lacktriangle un dispositif adéquat crée dans l'espace situé entre les deux plaques un champ magnétique uniforme $ec{B}$

orthogonal aux vecteurs vitesses \vec{v}_1 , \vec{v}_2 et au champ électrique \vec{E} d'intensité $\vec{B} = 0,01$ T.

- 2-2-1/ Quel doit être le signe de la tension $U = V_R V_Q$ pour que les ions $^{A1}Zn^{2+}$, arrivant en O_2 avec la vitesse v_1 , traversent cette chambre en ligne droite? (0,5 pt)
- 2-2-2/ Reprendre sur votre copie la chambre (3), puis représenter les deux forces qui s'exercent sur l'ion ^{A1}Zn²⁺ au point M. (1 pt)

2-2-3/ Exprimer la tension U en fonction de v₁, B, d. Calculer sa valeur. (1 pt)

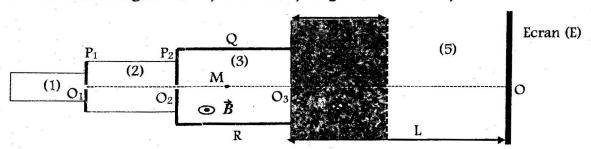
2-3/ Déviation des ions: chambre (4)

Après le trou O3, l'isotope A1Zn2+ subit sur la distance £ = 5,00 cm l'action d'un champ magnétique

uniforme \vec{B} perpendiculaire au plan de la figure d'intensité $\vec{B} = 5,24.10^{-2} \text{ T}$.

2-3-1/ Sachant que le mouvement de l'ion A1Zn²⁺ est circulaire uniforme dans la chambre (4), exprimer le rayon R₁ de l'arc décrit par l'ion A1Zn²⁺ en fonction de q, m₁, B' et v₁. (0,5 pt)

2-3-2/ Reprendre sur votre copie les chambres (4) et (5), puis représenter la trajectoire d'un ion ^{A1}Zn²⁺ de O₃ à l'écran. (1 pt)


2-3-3/A une distance L = 2,00 m du point O_3 , on place un écran (E) sur lequel arrive l'ion $^{A1}Zn^{2+}$ en un point P tel que OP = H = 10,00 cm appelée déflexion magnétique.

A la sortie de la chambre (4), le vecteur vitesse d'un ion A1Zn2+ fait un angle α avec l'horizontale OO3.

Etablir l'expression de la charge massique $\frac{q}{m_1}$ en fonction de H, B', ℓ , L et v₁. Calculer $\frac{q}{m_1}$. (1 pt)

En déduire la valeur du nombre de nucléon A_1 de l'isotope $^{A1}Zn^{2+}$ ainsi que le nombre de nucléon A_2 de l'isotope $^{A2}Zn^{2+}$. (1 pt)

N.B: on néglige la largeur ℓ de la chambre (4) par rapport à la longueur L et on suppose que l'angle α est faible. On donne: nombre d'Avogadro $N_A = 6.02.10^{23}$ mol⁻¹; charge élémentaire $e = 1.60.10^{-19}$ C

EXERCICE 3: (4,5 points)

On donne: I = 10 A; B = 0.05 T; le poids du conducteur P = 0.5 N; L = 0 A = 20 cm; L = 5 cm

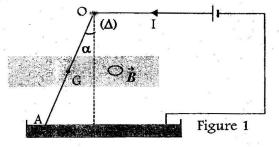
3-1/ Un conducteur rectiligne OA = L peut tourner autour d'un axe (Δ) horizontal passant par le point O

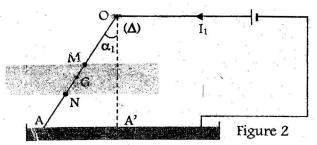
tout en restant dans un plan normal au champ magnétique uniforme \overrightarrow{B} créé par un aimant en U.

Le conducteur OA prend une nouvelle position d'équilibre et s'incline d'un angle α par rapport à la verticale quand un courant d'intensité I le traverse.

La zone d'influence du champ magnétique \vec{B} couvre le centre de gravité G du conducteur OA sur une largeur \hat{L} (2,5 cm de part et d'autre du point G). (voir figure 1)

3-1-1/ Enoncer la loi de Laplace. (1 pt)


3-1-2/ Représenter les forces qui s'exercent sur le conducteur en équilibre (figure 1). En déduire le sens


$de \vec{B}$. (1 pt)

3-1-3/ Déterminer l'angle α que fait le conducteur OA avec la verticale. (1 pt)

On supposera que a est faible: la longueur du conducteur placée dans le champ magnétique reste sensiblement égale à L

- 3-2/ La surface libre horizontale de la solution élect. olytique qui assure la continuité du circuit électrique se trouve à la distance verticale OA' = d = 19,02 can du point O. Le point G représente le milieu du segment MN. (voir figure 2)
- 3-2-1/ Montrer que la plus grande valeur de l'angle d'inclinaison α est $\alpha_1 = 18^\circ$. (0,75 pt)
- 3-2-2/ Déduire l'intensité I_1 qui permet d'obtenir une telle déviation, sachant que $\alpha = \alpha_1 = 18^\circ$ n'est plus faible. (0,75 pt)

