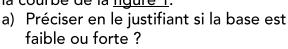


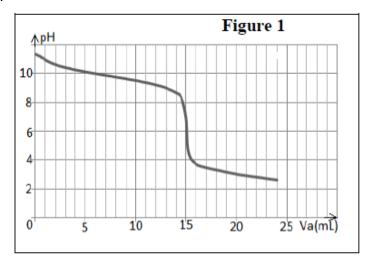
Devoir n°4 – Sciences Physiques – 4 heures

Exercice n°1:

- 1) On fait barboter un volume V de gaz chlorhydrique (HCl) mesuré à 0°C (Vm = 22,4 L/mol) dans V_0 = 100 mL d'eau pure et on obtient une solution S_0 de concentration C_0 = 0,1mol/L. Par la suite, toutes les solutions seront prises à 25°C. On introduit dans une fiole jaugée 10 mL de la solution S_0 que l'on dilue à 100 mL. Soit S_1 cette solution. On dose 20 mL d'une solution de soude de concentration inconnue Cb par 5 mL de solution S_1 .
 - a) Déterminer le volume V de gaz chlorhydrique dissout.
 - b) Quel est le pH de la solution S_1 ?
 - c) Déterminer la concentration Cb et le pH de la solution de soude.
- 2) On se propose de doser une solution aqueuse S_B d'une monobase B de concentration molaire C_B, par la solution S₀. On prélève 20 mL de S_B auquel on ajoute progressivement la solution S₀. On suit l'évolution de pH en fonction du volume Va de la solution S₀, on obtient la courbe de la <u>figure 1</u>.



b) Déterminer les coordonnées du point d'équivalence, puis déduire la valeur de C_B.



3)

- a) Définir un indicateur coloré.
- b) Parmi les indicateurs colorés du tableau (1), préciser en le justifiant lequel faut-il choisir pour repérer le point d'équivalence ?

Tableau 1	Indicateur coloré	Hélianthine	Rouge de méthyle	phénolphtaléine
	Zone de virage	3,1 - 4,4	4,2-6,2	8,2 - 10,0

- c) Quelles sont les propriétés du mélange obtenu à la demi-équivalence ?
- d) Déduire la constante pka du couple acide-base correspondant à la base B.
- e) En utilisant le tableau (2), identifier, en vous justifiant, la base B.

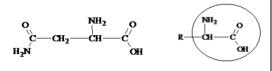
Tableau 2	Acide/base	$(CH_3)_3NH^+/(CH_3)_3N$	NH ₄ ⁺ /NH ₃	HNO ₂ /NO
	pka	9,80	9,25	3,35

4) Écrire l'équation de la réaction de ce dosage.

Exercice n°2:

1) La formule semi-développée de l'asparagine est donnée ci-contre (1).

Dans la suite, pour simplifier, on adoptera la formule (2) et on supposera que le groupe d'atomes R est sans influence sur les propriétés chimiques du groupe encadré.



- a) Reproduire la formule (2) sur la copie et nommer le groupe fonctionnel encadré.
- b) Définir un atome de carbone asymétrique. Marquer d'un astérisque (*) l'atome de carbone asymétrique de la formule reproduite sur la copie.
- c) Représenter en perspective les deux énantiomères de l'asparagine.
- 2) On dissout maintenant 400 mg d'asparagine pure dans 100 d'eau distillée.

- a) Calculer la concentration molaire de la solution obtenue. Donnée : masse molaire de l'asparagine : Masp = 132 g.mol⁻¹.
- b) Dans la solution ainsi préparée, quel ion particulier trouve-t-on ? Ecrire les couples acide-base correspondant à cet ion et les demi-équations protoniques de ces couples.
- 3) On envisage de déterminer les pka, notés pka₁ et pka₂ associés aux deux couples acidebase. Pour cela on mélange 10 mL de la solution d'asparagine avec 5mL d'une solution d'acide chlorhydrique de même concentration molaire.
 - a) Ecrire l'équation-bilan de la réaction entre l'ion particulier et l'ion hydronium.
 - b) Le du mélange obtenu vaut 2,16. Déterminer le pKa associé au couple acide-base mis en jeu.
 - c) Proposer, sans calcul, une méthode expérimentale qui permet de déterminer le pka associé à l'autre couple acide-base de d'ion particulier issu de l'asparagine.

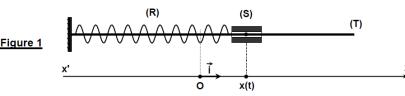
Exercice n°3:

Un pendule élastique est constitué d'un solide (S) de masse m pouvant coulisser, sans frottement, sur une tige horizontale (T). Le solide (S) est attaché à un ressort, à spires non jointives, de masse négligeable et de raideur k. La position du centre d'inertie G de (S) est repérée par son abscisse x(t) sur un axe horizontal (x'Ox). L'origine O des abscisses est confondue avec la position de G lorsque (S) est à l'équilibre.

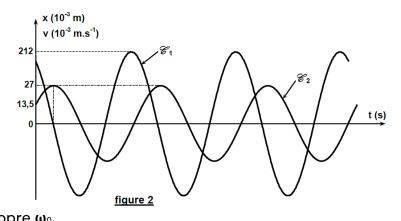
Écarté de sa position d'équilibre, puis abandonné à un instant de date t = 0 s, le solide (S) se met à osciller de part et d'autre du point O. À un instant de date t, le système est représenté comme l'indique la figure 1.

1)

a) Représenter sur la figure 1 les forces extérieures exercées sur (S) à l'instant de date t.



- b) Établir l'équation différentielle qui régit l'évolution de l'abscisse x(t) du centre d'inertie G. En déduire la nature de son mouvement.
- 2) À l'aide d'un dispositif approprié, on enregistre l'évolution de l'abscisse x(t) et celle de la vitesse v(t) de G. On obtient les courbes \(\mathcal{C}_1\) et \(\mathcal{C}_2\) de la figure 2.
 - a) Montrer que la courbe \mathcal{C}_1 correspond à v(t).
 - b) À partir des courbes, déterminer les amplitudes respectives x_{max} et v_{max} de x(t) et de v(t). En déduire la valeur de pulsation propre ω_0 .



- c) Déterminer la phase initiale ϕx de x(t).
- 3) L'énergie totale E du système {ressort + solide} est constante : $E = 3,645.10^{-3} J.$
 - a) Donner l'expression de E en fonction de k et x_{max} .
 - b) En déduire les valeurs de k et m.

Exercice n°4:

1ère Partie

Un circuit électrique fermé est constitué des dipôles suivants :

- un générateur de tension constante et de résistance interne négligeable ;
- un interrupteur K ;
- des fils de connexion;

- un solénoïde b₁, de longueur ℓ = 0,9 m, formé de N₁ = 2000 spires de section S₁ = 200 cm².

A l'intérieur de b₁ se trouve un autre solénoïde b₂ dont les bornes A et B sont reliées à un

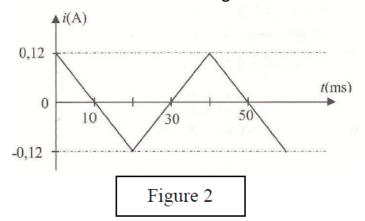
galvanomètre G. Les solénoïdes b_1 et b_2 sont en position horizontale et coaxiaux. Leurs centres coïncident au point O de l'axe x'x.

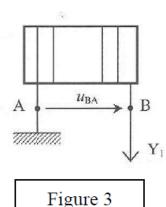
Pour plus de clarté, certaines spires ne sont pas représentées sur la figure 1.

L'intensité du courant qui circule dans b_1 est $I_1 = 0,12$ A. On donne $\mu_0 = 4 \cdot 10^{-7}$ SI.

- 1) Déterminer l'inductance L₁ du solénoïde b₁.
- 2) Déterminer la valeur B du vecteur champ magnétique \overrightarrow{B} créé à l'intérieur de b₁.
- 3) On ouvre l'interrupteur K, le galvanomètre détecte un bref courant qui circule dans le solénoïde b₂.
 - a) Représenter qualitativement, l'allure de la variation de l'intensité du courant en fonction du temps dans le soléno \ddot{o} de b_1 .
 - b) Donner le nom du phénomène physique qui justifie cette allure.
 - c) Donner le nom du phénomène physique qui crée le courant i₂ dans le solénoïde b₂.
- 4) Reproduire le schéma de la figure 1 et représenter :
 - a) les sens des courants i₁ et i₂ circulant dans les solénoïdes b₁ et b₂;
- b) les vecteurs champs magnétiques \vec{B}_1 et \vec{B}_2 respectivement dans b_1 et b_2 au point O. 2ème Partie
- 5) Dans la suite de l'exercice, on prendra $L_1 = 0,11 \text{ H}$.

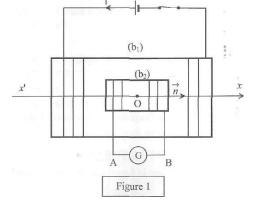
Le générateur de tension constante est remplacé par un générateur de basses fréquences délivrant une tension triangulaire. La courbe représentative du courant variable i(t), dans le solénoïde b₁ est donnée à la figure 2.





Les bornes de A et B de b_2 sont maintenant connectées sur les voies d'un oscilloscope, en remplacement du galvanomètre.

- a) Déterminer l'expression i(t), l'intensité du courant dans le solénoïde b₁ sur les intervalles [0 ; 20 ms] et]20 ms ; 40 ms].
- b) Établir l'expression du champ B₁ en fonction du temps sur chacun de ces intervalles.
- 6) Le solénoïde b_2 est formé de N_2 = 500 spires de section S_2 = 100 cm². Le vecteur normal \vec{n} est orienté comme indiqué sur la figure 1.
 - a) Établir l'expression du flux ϕ_2 dans b_2 en fonction du temps sur chacun de ces intervalles.
 - b) Déterminer la tension $u_{AB}(t)$ aux bornes de l'oscilloscope sur chacun de ces intervalles.
 - c) Représenter qualitativement l'allure de $u_{AB}(t)$ sur l'intervalle [0 ; 40 ms].



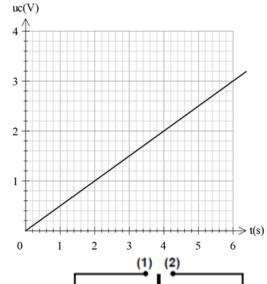
Exercice n°5:

Partie n°1

A l'aide d'un générateur qui fournit un courant d'intensité constante $I = 0,25 \mu A$, on charge un condensateur de capacité C. On mesure la tension u_C aux bornes du condensateur à des instants différents ce qui a permis de tracer la courbe $u_C = f(t)$ de la Figure ci – contre

1)

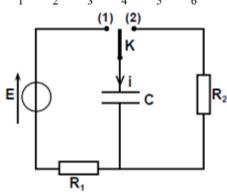
- a) Justifier théoriquement l'allure de la courbe en établissant l'expression de la tension uc en fonction de I, C et t.
- b) Déterminer graphiquement la valeur de C.
- c) Calculer l'énergie emmagasinée par le condensateur à la date t = 4 s.
- 2) Le condensateur est plan et formé de deux armatures séparées par une mince couche d'un diélectrique d'épaisseur e = 0,2 mm et de permittivité absolue $\varepsilon = 2.10^{-7} \, \text{F} \cdot \text{m}^{-1}$. Déterminer l'aire de la surface S des armatures en regard



Partie n°2

Avec un générateur délivrant à ses bornes une tension constante E=5V, deux résistors de résistances R₁ et R₂ un condensateur de capacité C et un commutateur K, un élève réalise le montage schématisé ci – contre :

Le condensateur étant initialement déchargé, l'élève place à un instant $t_0 = 0$ s, le commutateur K en position (1) et suit, à l'aide de l'oscilloscope, l'évolution temporelle de la tension u_C aux bornes du condensateur. Pour $R_1 = 1 k\Omega$, il obtient la courbe de la figure ci-dessous.



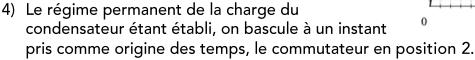
1) En appliquant la loi des mailles, établir l'équation différentielle régissant les variations de la tension u_c.

2) Cette équation différentielle admet une solution de la forme $u_c(t) = A(1 - e^{-\frac{t}{\tau}})$ où A et τ sont deux constantes positives non nulles. En se uc(V)

référant à l'expression de uc(t), préciser la limite vers laquelle tend uc pour un temps de charge très long. En déduire graphiquement, la valeur de A: identifier A.

3)

- a) Nommer τ , puis donner son expression en fonction des grandeurs caractéristiques du circuit.
- b) Calculer la valeur de u_C à l'instant $t = \tau$. En déduire graphiquement, la valeur de τ . Trouver alors celle de C.



- a) Quel est le phénomène qui se produit au niveau du condensateur.
- b) A l'instant t₂ = 1 ms, le condensateur est à moitié déchargé. Dire, en le justifiant et sans faire du calcul, si la résistance R2 est supérieure, inférieure ou égale à R1.

