

Devoir n°5 – Sciences Physiques – 3 heures

Exercice n°1:

Lors de la formation d'une roche, les compositions isotopiques du strontium (Sr) et du rubidium (Rb) sont :

Strontium	isotopes	84 38	86 38	⁸⁷ Sr	88 88 Sr
	Composition isotopique	0,56%	9,86%	7,00%	82,58%
Rubidium	isotopes	85 87 Rb	87Rb		
	Composition isotopique	72,16%	27,84%		

Le rubidium 87 est émetteur β^- . Les autres isotopes sont stables.

1. Déviation magnétique des particules

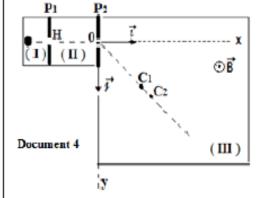
La déviation magnétique des particules électriques possède de nombreuses applications théoriques et pratiques (cyclotrons ; téléviseurs ; filtres de vitesse ; ...).

On se propose de vérifier la composition isotopique d'un échantillon de rubidium naturel. Pour cela, des ions rubidium ${}^{85}_{37}{\rm Rb}^+$ et ${}^{A}_{37}{\rm Rb}^+$ (avec A>85) de masses respectives m_1 , m_2 sont émis par une chambre d'ionisation (I) avec une vitesse quasi nulle. Ils sont ensuite accélérés dans une chambre d'accélération (II) par une tension $U=Vp_1$ - Vp_2 appliquée entre les plaques P_1 et P_2 . Arrivés au point O, ils pénètrent avec des vecteurs vitesses $\overrightarrow{V_1}=V_1\overrightarrow{t}$ et $\overrightarrow{V_2}=V_2\overrightarrow{t}$ dans une région (III) de l'espace où règnent un vide supposé parfait et un champ magnétique uniforme \overrightarrow{B} dirigé selon l'axe Oz mais de sens contraire à \overrightarrow{k} ($\overrightarrow{B}=-\overrightarrow{Bk}$). Ces particules subissent la force de LORENTZ.

1. 1. Le poids d'un ion est négligeable devant la force de LORENTZ et les vitesses sont faibles devant celle de

- a) Montrer que le mouvement d'un ion de masse m est plan, uniforme et circulaire.
 - b) Etablir l'expression de la période T du mouvement d'un ion en fonction de e, B et m (masse de l'ion).
- 1. 2. Dans le repère $(0, \vec{i}, \vec{j})$:
 - a) Préciser les coordonnées du centre noté Ω du cercle de rayon R décrit par l'ion.

Page 3 sur 4



- b) Établir les équations horaires x(t), y(t) et z(t)du mouvement.
- c) En déduire l'équation cartésienne de la trajectoire.
- d) Donner l'expression du rayon R en fonction de m; v; e et B.
- 1. 3. Les jets d'ions sont reçus par deux collecteurs C₁ et C₂ convenablement placés comme l'indique le Document 4. Dans le repère (0, î, j, k), les abscisses des points C₁ et C₂ sont respectivement x₁ = 55,56 cm et x₂ = 56,21 cm. La durée du trajet (du point O au collecteur) d'un ion vaut ^T/₄.
 - a) Les rayons des trajectoires des ions de masses m_1 , m_2 étant respectivement R_1 et R_2 , exprimer le rapport $\frac{R_1}{R_2}$ en fonction du nombre de masse A de l'isotope ${}_{37}^ARb^+$. Calculer A.
 - b) Dans quel collecteur sont reçus les ions de masse m₁? Justifier la réponse.
 - c) En une minute, les quantités d'électricité reçues respectivement par les collecteurs C₁ et C₂ sont : q₁ = 6,15.10⁻⁸C et q₂ = 2,38.10⁻⁸C.

Déterminer la composition isotopique du mélange d'ions. Y a-t-il accord avec les données ?

Données: $m_1 = 85u$; $m_2 = A.u$; $1u = 1,67.10^{-27}$ kg; $e = 1,6.10^{-19}$ C; B = 0,1 T.

2. Étude de la radioactivité du rubidium 87

- 2.1
 - a) Écrire la réaction de désintégration de cet isotope.
 - b) Donner la loi de décroissance radioactive d'une population N de noyaux radioactifs.
- 2. 2. Lors d'un T.P, un professeur met à la disposition des élèves des résultats de mesures de la population N de radioéléments de rubidium en fonction du temps :

t (années) 10 ¹⁰	0	2,45	5,50	9,80	14,70	19,90
N	1200	848,5	551,2	300	150	75

a) Tracer la courbe représentant le nombre de noyaux radioactifs N en fonction du temps. En déduire la période radioactive T (ou demi-vie) du rubidium 87.

Échelles: en abscisses: 1 cm pour 2.1010 ans;

en ordonnées: 1 cm pour 100 noyaux radioactifs.

b) Lors de l'exploitation de ces mesures, un élève a obtenu une droite d'équation : $lnN = 7,09 - 1,4146.10^{-11}t$ avec t exprimé en années.

Montrer que l'équation de la droite obtenue est bien en accord avec le résultat précédent.

2. 3. Détermination de l'âge de la roche

On considère un échantillon de roche. On note respectivement $N_1 = N(Sr86)$, $N_2 = N(Sr87)$ et $N_3 = N(Rb87)$ les nombres d'atomes de strontium 86, de strontium 87 et de rubidium 87 présents aujourd'hui dans cet échantillon, puis $N_{01} = N_0(Sr86)$, $N_{02} = N_0(Sr87)$ et $N_{03} = N_0(Rb87)$ les nombres d'atomes de strontium 86, de strontium 87 et de rubidium 87 présents dans cet échantillon lors de sa formation.

- a) Quelle relation existe-t-il entre N1 et N01?
- b) Exprimer N₂ en fonction de N₀₂, de N₀₃ et du temps t.
- c) Exprimer N2 en fonction de N02, de N3 et du temps t.
- d) On mesure à l'aide d'un spectrographe de masse les rapports $\frac{N_2}{N_1}$ et $\frac{N_3}{N_1}$ dans l'échantillon. Exprimer $\frac{N_2}{N_1}$ en fonction de $\frac{N_{02}}{N_{01}}$, de $\frac{N_3}{N_1}$ et du temps t.
- e) Les valeurs mesurées sont : $\frac{N_2}{N_1} = 0.728$ et $\frac{N_3}{N_1} = 0.407$. Calculer l'âge t de la roche.

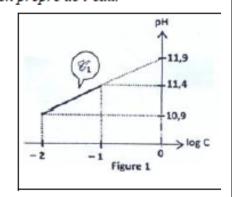
Exercice n°2:

Données

- Toutes les expériences sont faites à la même température supposée constante et égale à 25 °C, température à laquelle pKe = 14.
- On néglige dans tout ce qui suit les ions provenant de l'ionisation propre de l'eau.

Pour préparer trois solutions aqueuses (S_1) , (S_2) et (S_3) de même concentration molaire $C_0 = 10^{-1}$ mol.L⁻¹, on dissout respectivement trois monobases B_1 , B_2 et B_3 dans l'eau pure.

- 1. Étude de la base B_1 appartenant au couple B_1H^+/B_1
- a) La mesure du pH au cours de la dilution de (S_1) pour des valeurs de la concentration C allant de 10^{-2} mol.L⁻¹ à 10^{-1} mol.L⁻¹, a permis de tracer la courbe \mathscr{C}_1 de la figure 1.
- a_1) A partir de la courbe \mathscr{C}_1 , établir la relation qui lie pH à logC sous la forme pH = b + alogC où a et b sont des constantes à déterminer.



- a2) A partir de la relation qui lie pH à logC, déduire si la base B1 est une monobase forte.
- b) Pour une solution aqueuse de base faible B, de concentration C,
- b₁) Recenser les espèces chimiques présentes dans la solution.
- b₂) Déterminer l'expression de la constante d'acidité du couple BH⁺/B en fonction de C puis déduire la relation qui lie pH à logC en précisant les approximations utilisées.
 - b3) En déduire la valeur du pKa1 du couple B1H+/ B1.
- 2. Étude des bases B2 et B3

Les résultats de la mesure de pH de chacune des solutions (S₂) et (S₃) préparées sont consignés dans le tableau ci-contre.

Solution	(S ₂)	(S_3)	
pН	11,1	13,0	

- a) Dans chacune de ces solutions de base de concentration C_0 , on définit une proportion \propto de molécules de B ayant réagit sur l'eau par rapport aux molécules de B introduites par $\propto = \frac{[BH^+]}{C_0}$.
 - a_l) Montrer que \propto peut se mettre sous la forme $\propto = \frac{10^{\mathrm{pH-pKe}}}{C_0}$.
- b) A un même volume $V_{S2} = 10$ mL de (S_2) et $V_{S3} = 10$ mL de (S_3) , on ajoute progressivement et séparément une solution d'acide nitrique HNO₃ (acide fort) de concentration molaire C_A . La mesure du pH, après chaque ajout d'un volume V_A de la solution acide, a permis de tracer dans chaque cas, la courbe pH = $f(V_A)$.

13,0

9,2

7.0

Les courbes & et & obtenues sont représentées sur la figure 2.

- b₁) Identifier et reproduire la courbe & qui correspond à l'évolution du pH du mélange réactionnel entre (S₃) et la solution d'acide nitrique.
- b₂) Définir l'équivalence acido-basique et déduire la valeur de C_A.
- c) En exploitant la courbe &, déterminer la valeur de pKa₂ du couple B₂H⁺/B₂ et vérifier que B₂ est une base plus faible que B₁.
 - d) Écrire l'équation de la réaction entre B2 et l'acide nitrique.
- e) Montrer, sans faire de calcul, que la solution obtenue à l'équivalence au point E2 est acide.
- f) Calculer pH_{E2} du mélange obtenu à l'équivalence sachant que le pH dans ces conditions s'écrit : $pH = \frac{1}{2} (pKa_2 log[B_2H^+])$, où $[B_2H^+]$ est la concentration de l'acide B_2H^+ à l'équivalence.

Exercice n°3:

On réalise un circuit électrique en série comportant un résistor de résistance R_i variable, une bobine

d'inductance L et de résistance interne r, un ampèremètre et un interrupteur K (figure 1). L'ensemble est alimenté par un générateur de force électromotrice (fem) E et de résistance interne négligeable. Un oscilloscope bicourbe permet de visualiser l'évolution au cours du temps des tensions U_{AM} , aux bornes de la branche du circuit AM et $U_{R_1} = U_{DM} = R_1$, i , la tension aux bornes du dipôle résistor lorsque sa

résistance est réglée à une valeur R₁.

A l'instant t = 0, on ferme l'interrupteur K, les courbes traduisant
l'évolution au cours du temps de U_{AM} et U_{DM} sont données par la figure 2.

Figure 1

Figure 2

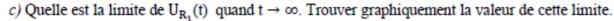
 a) Exprimer à une date t quelconque : la puissance électrique fournie par le générateur à tout le circuit ; la puissance électrique reçue par la bobine ; la puissance électrique reçue par

le résistor R₁.

- b) En appliquant le principe de conservation de l'énergie, en déduire l'équation différentielle qui régit l'évolution de la tension U_{R1} au cours du temps.
- 2. La solution de l'équation différentielle établie

précédemment s'écrit : $U_{R_1}(t) = U_{O_1}(1 - e^{-(\frac{R_1 + r}{L})t})$; avec U_{O_1} la valeur de $U_{R_1}(t)$ en régime permanent.

 a) Laquelle des deux courbes : courbe (1) et courbe (2) correspond à U_{R1}(t).



- 3. Lorsque le régime permanent est établi, l'ampèremètre indique la valeur I₀₁ = 50 mA.
 - a) Déterminer la valeur de la résistance R₁ du résistor.
 - b) Montrer que l'expression de la résistance r de la bobine s'écrit :

$$r = (\frac{E}{U_{0_1}} - 1)R_1$$
. Calculer la valeur de r.

- a) On définit un temps caractéristique τ₁ du circuit comme étant la date où la tension U_{R1} vaut
 - $(1-\frac{1}{2})U_{0_1}$. Exprimer littéralement τ_1 et déterminer graphiquement sa valeur de deux manières.
 - b) En déduire la valeur de l'inductance L de la bobine.
- Maintenant, on règle la résistance Ri à une valeur R2.
- a) Dans le but d'atteindre plus lentement le régime permanent, dire en le justifiant si l'on doit augmenter ou diminuer la valeur de la résistance par rapport à la valeur R₁.
- b) Pour cette valeur R_2 de la résistance R_i , la constante de temps τ_2 est alors $\tau_2 = 2\tau_1$. Déterminer, dans ce cas, la valeur de l'intensité du courant I_0 , en régime permanent.

