

Devoir n°6 – Sciences Physiques – 2 heures 30 min

Exercice n°1:

- 1) Une masse m = 1,38 g d'un mono alcool saturé A est oxydé complètement en acide carboxylique. On rappelle que le nombre de moles d'acide formé est égal au nombre de moles d'alcool oxydé.
 - a) Quelle est la classe de cet alcool A ? Justifier votre réponse.
 - b) L'acide carboxylique formé précédemment est dilué avec de l'eau pure pour former une solution (S_1) de volume V = 500 mL. On prélève un volume $V_A = 10$ mL de la solution (S_1) , et on le dose avec une solution de soude, de concentration molaire $C_B = 0.04$ mol.l⁻¹. L'équivalence acido-basique est obtenue lorsqu'on a versé un volume $V_B = 15$ mL de la solution de soude.
 - Calculer le nombre de moles d'acide carboxylique contenus dans la solution (S_1) .
 - Calculer la masse molaire de l'alcool A, écrire sa formule semi développée et donner son nom.
- 2) On dissout n moles d'acide méthanoïque HCOOH dans 500 mL d'eau distillée. On obtient ainsi une solution (S₂) de pH = 2,7 à 25°C. On négligera la variation de volume après la dilution. Le pKa du couple HCOOH / HCOO-est égal à 3,75.
 - a) Ecrire l'équation traduisant la réaction de l'acide méthanoïque avec l'eau.
 - b) Déterminer les concentrations molaires des espèces chimiques (autres que l'eau) présentes dans la solution (S_2) .
 - c) En déduire la valeur de n.
- 3) On veut préparer une solution tampon de pH = 3,75 par la méthode suivante : on dissout une masse m d'hydroxyde de sodium (NaOH) solide dans la solution (S_2). On néglige la variation de volume. Calculer m.

On donne: $M(C) = 12 \text{ g.mol}^{-1}$; $M(Na) = 23 \text{ g.mol}^{-1}$; $M(O) = 16 \text{ g.mol}^{-1}$; $M(H) = 1 \text{ g.mol}^{-1}$

Exercice n°2:

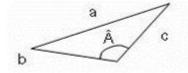
Entre deux points A et C d'un circuit, on place en série :

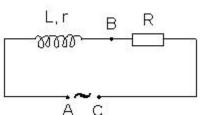
- entre A et B une bobine d'inductance L et de résistance r,
- entre B et C un conducteur ohmique de résistance R.

Un générateur de tension sinusoïdale délivre un courant i(t) = I_m sin ωt entre A et C.

On désigne par :

- φ la phase de la tension $u_{AC}(t)$ par rapport à i(t);
- Z₁ l'impédance de la portion (A,B);
- φ_1 la phase de $u_{AB}(t)$ par rapport à i(t).


Les mesures des tensions efficaces entre les différents points ont donné : $U_{AB} = U_{BC} = 70 \text{V}$ et $U_{AC} = 70 \sqrt{3} \text{ V}$



- a) u_{AB} (t) en fonction de Z_1 , I_m , ω et φ_1 .
- b) u_{BC} en fonction de R, I_m , ω .
- 2) Construire le diagramme de Fresnel en tensions efficaces relatif à cette expérience.
- 3) Calculer φ et φ_1 .
- 4) On donne R = 100Ω .
 - a) Calculer Z_1 , r, L si ω = 100 π rad s⁻¹.
 - b) Donner l'expression de u_{AC} (t).

N.B.: Dans un triangle quelconque de côtes a, b, c on peut

écrire $a^2=b^2+c^2-2bc \cos \widehat{A}$

Exercice n°3:

Le circuit électrique, schématisé ci-contre comporte :

- Une bobine d'inductance L et de résistance r.
- Un conducteur ohmique de résistance R=120 Ω .
- Un condensateur de capacité C.
- •Un ampèremètre.
- •Un générateur BF.
- •Un voltmètre.

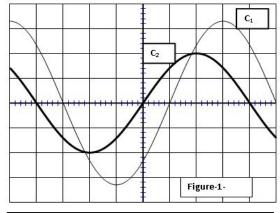
Le générateur BF délivre une tension alternative

sinusoïdale $u(t) = U_m \sin\left(2000t + \frac{\pi}{2}\right)$ de fréquence N réglable, de valeur efficace constante et de phase initiale constante.

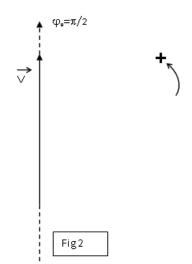
L'intensité instantanée du courant électrique qui circule dans le circuit est $i(t)=I_m \sin(2\pi Nt+\phi_i)$ de valeur efficace $I=25\sqrt{2}$ mA. A l'aide d'un oscilloscope bicourbe, on visualise la tension u(t) sur la voie 1 et la tension $u_c(t)$ aux bornes du condensateur sur la voie 2. On obtient les oscillogrammes de la figure 1.

- a- Reproduire le schéma du circuit électrique et indiquer par un tracé clair les connexions avec l'oscilloscope.
- b- Faire correspondre à chaque oscillogramme la tension correspondante.
- c- Déterminer les expressions de u(t) et uc(t).
- d- Calculer φ_i, en déduire la nature du circuit.
- 2- l'équation différentielle régissant les variations de l'intensité du courant i(t) est donnée par :

$$(R+r)i(t) + L\frac{di(t)}{dt} + \frac{1}{C}\int idt = u(t)$$


- a- Reproduire et compléter la construction de Fresnel schématisée sur la figure 2.
- b- Déduire la valeur de C; L et r.

11-/


- 1- Etablir l'expression de l'amplitude I_m de l'intensité en fonction de U_m , R, r, L, C et ω .
- 2- Déduire l'expression de Q_m amplitude de la charge instantanée du condensateur.

3-

- a- Montrer que la fréquence à la résonance de charge est $N_r = \sqrt{N_0^2 \frac{(R+r)^2}{8\pi^2L^2}}$.
- b- Déterminer l'indication du voltmètre dans ces conditions.

Les deux voies ont la même sensibilité verticale : 5 V → 1 div

