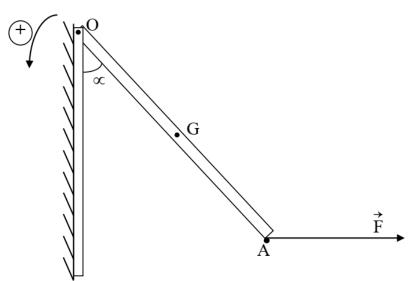


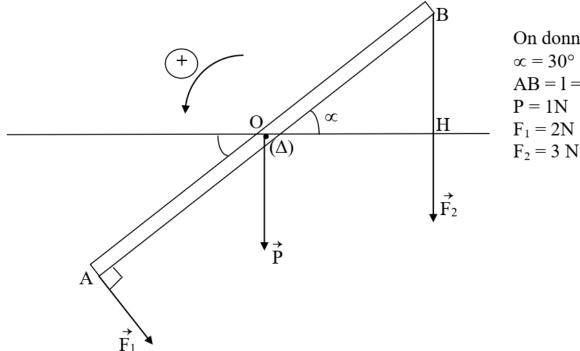
Equilibre d'un solide mobile autour d'un axe fixe

Exercice n°1:


Sur un disque de rayon R = 20 cm, on exerce des forces d'intensités égales à 30 N $(F1 = F_2 = F_3 = 30 \text{ N})$ et situées dans le plan vertical du disque.

- 1) Calculer le moment de ces forces par rapport à un axe passant par 0, centre du disque et perpendiculaire au plan du disque.
- 2) Le disque est-il en équilibre? Justifie ta réponse.

Exercice n°2:

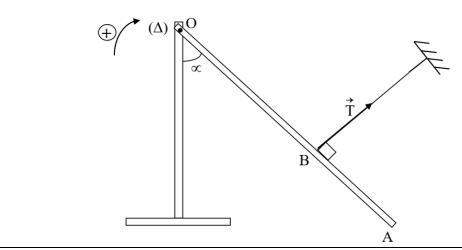

On considère le dispositif représenté par la figure ci-dessous. La barre OA de poids P = 2N tourne autour de l'axe fixe O.

- 1) Quelle force \vec{F} horizontale faut-il appliquer au point A pour que la barre OA de longueur OA = 2.0G = 40 cm soit en équilibre autour de l'axe O dans la position correspondant à $\propto = 30^{\circ}$
- 2°) Sur un schéma, indiquer le sens de la réaction, \vec{R} du mur sur la barre OA au point O.
- 3°) En déduire son intensité F.

Exercice n°3:

Une tige homogène de longueur l'et de poids P est mobile autour d'un axe(Δ) perpendiculaire à cette tige en son milieu. On applique à l'extrémité A une force \overrightarrow{F}_1 perpendiculaire à la tige et à l'extrémité B une force \overrightarrow{F}_2 verticale.

On donne: $\infty = 30^{\circ}$ AB = 1 = 10 cmP = 1N $F_1 = 2N$


- 1) Calculer les moments des forces exercées sur la tige par rapport à (Δ) .
- 2) La tige est-elle en équilibre ? Justifie ta réponse.
- 3) Considérons la même tige avec les mêmes forces mais l'axe de rotation (Δ) est en B. Calculer les moments des forces exercées sur la tige par rapport à (Δ) .

Exercice n°4:

Une tige homogène OA de masse m et de longueur l peut tourner dans un plan vertical autour d'un axe horizontal (Δ) passant par 0. Un fil accroché en un point B de la tige tel que

 $OB = \frac{2}{3}OA$, exerce sur la tige une force \overrightarrow{F} qui lui est perpendiculaire ; la tige fait un angle ∞ avec la vertical.

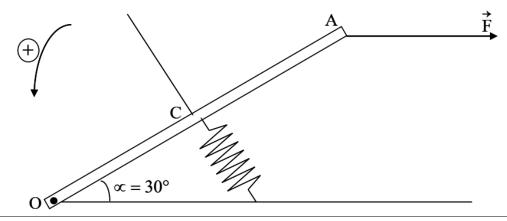
<u>Données</u>: m = 2.5 kg; $\infty = 15^{\circ}$; g = 10 N/kg

1) Quelles sont les forces qui s'exercent sur la tige à l'équilibre. Les représenter qualitativement.

2) Déterminer en fonction de m, ∞ et g la tension \overrightarrow{T} du fil.

3) Déterminer la réaction \overrightarrow{R} du support en O.

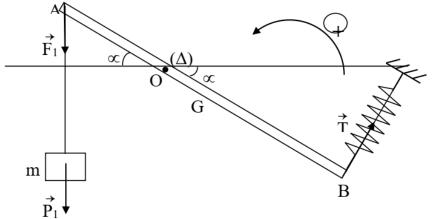
Exercice n°5:


Une pédale OA, de poids négligeable, de longueur 20 cm est mobile autour d'un axe horizontal

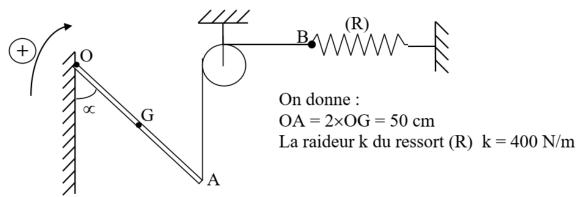
passant par 0. On exerce en A une force \vec{F} horizontale d'intensité F = 20 N. La pédale est en équilibre quand le ressort fixé en son milieu C prend une direction perpendiculaire à OA ; OA fait un angle $\alpha = 30^{\circ}$ avec l'horizontale.

Déterminer à l'équilibre :

1) La tension exercée par le ressort sur la pédale.


2) La raideur k du ressort, si on veut un raccourcissement de ce dernier à 8 cm.

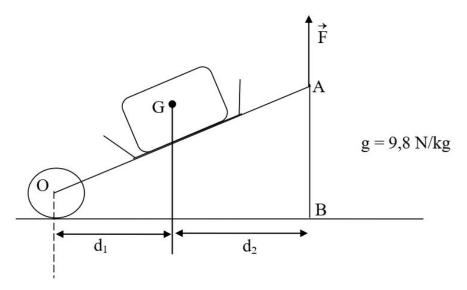
Exercice n°6:


Une barre homogène AB de masse m = 4 kg de longueur AB = 60 cm est mobile autour d'un axe horizontal (Δ) passant par O tel que OA = 10 cm. Cette barre est maintenue en équilibre

par la tension \vec{T} d'un ressort et la tension \vec{F}_1 d'un fil tendu par le poids \vec{P}_1 d'une masse $m_1=1$ kg. On néglige les frottements sur l'axe. Calculer T sachant que la direction du ressort est perpendiculaire à la barre et que cette barre est inclinée d'un angle $\infty=60^\circ$ par rapport à l'horizontale. On donne g=10 N/kg.

Exercice n°7:

On étudie l'équilibre de la barre OA de poids P = 20 N, centre d'inertie G, mobile autour de l'axe horizontal O. (voir fig)

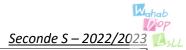


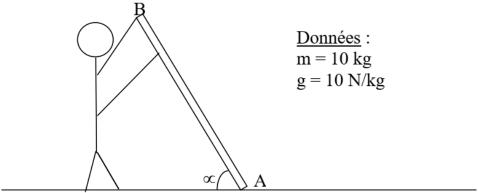
- 1) Il y a combien de système à considérer?
- 2) Faites le bilan des forces pour chaque système.
- 3) Etablir la condition d'équilibre de chaque système.
- 4) Calculer l'allongement Δl du ressort à l'équilibre. Celui-ci dépend-il de la valeur de l'angle ∞ ?

Exercice n°8:

La brouette est un exemple de levier. G est le centre de gravité de la brouette dont la masse totale est 150 kg. Pour soulever la brouette (maintenir en équilibre), chaque bras du manœuvre

exerce une force verticale $(F_1 = F_2)$. Ces forces $\vec{F_1}$ et $\vec{F_2}$ équivalent à une force unique \vec{F} verticale, appliquée en A.




- 1) Quelles sont les forces qui s'appliquent sur la brouette. Les représenter.
- 2) Calculer l'intensité de \vec{F} si $d_1 = 80$ cm et $d_2 = 60$ cm
- 3) En déduire la valeur commune de l'intensité des forces F₁ et F₂
- 4) Quelle est la réaction du sol en O?

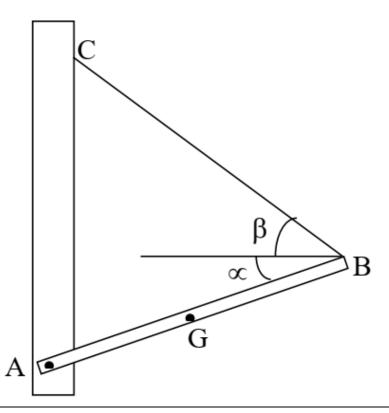
Exercice n°9:

Une poutre homogène AB de masse m repose sur le sol par son extrémité A. Une force F est exercée à l'autre extrémité B perpendiculaire à la poutre.

TEL D'EXCELLENCE PRIVE ROSE DIENG KUNT 324 Cité du golf – Cambérène Golf Sud Tel. 221 33 877 23 31 / 76 266 22 22 -BP: 5018 Dakar Fann – SENEGAL Email: keprosedieng@ism.edu.sn

- 1) La poutre tourne autour de quel point?
- 2) Représenter sur le schéma de façon sommaire les forces qui s'appliquent sur la poutre.
- 3) Exprimer l'intensité de \vec{F} lorsque la poutre en équilibre fait un angle ∞ avec le plan horizontal, en fonction de m, g et ∞ .

4) Compléter le tableau ci-dessous.


\propto	5	10	30	50	70	90
F(N)						

5) Déterminer la réaction \vec{R} du sol sur la poutre pour $\infty = 50^{\circ}$.

Exercice n°10:

Une poutre homogène AB de longueur l et de poids $P=10^3$ N est articulée en A dans un mur vertical. Elle est maintenue en équilibre grâce à un câble (C) fixé en C dans le mur. Les caractéristiques géométriques du dispositif sont les angles ∞ et β que forment la poutre et le câble avec l'horizontale.

Calculer la tension du câble avec $\infty = 45^{\circ}$ et $\beta = 60^{\circ}$

