

Liaisons chimiques

Exercice n°1:

1/ Rappeler les représentations de Lewis des atomes H, C, O et Cl.

2/ En déduire les diagrammes de Lewis des molécules : CH2Cl2, C2H5Cl et H2O2. Vérifient-ils la règle de l'octet.

Exercice n°2:

Pour chacune des molécules suivantes : H₂; HCl; O₂; NH₃; C₂H₄

- 1- Indiquer l'atomicité et donner le nom de chaque molécule
- 2- Proposer une représentation de Lewis

Exercice n°3:

1- Les molécules des composes ci – dessous ne comportent que des liaisons simples :

 N_2H_4 ; CH_4 ; C_3H_9N ; $C_2H_4Cl_2O$

Ecrire les formules développées de ces composés.

2- Les molécules ci-dessous comportent tous une liaison double ou triple.

 O_2 ; N_2 ; C_2H_2 ; HCN; C_4H_8 ; C_3H_4 ; C_3H_6O .

Représenter les formules développées de ces molécules.

Exercice n°4:

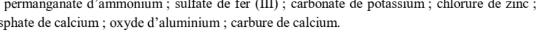
On considère les deux molécules suivantes (représentées ci – contre)

- 1. Quelle est l'atomicité de chacune de ces molécules ?
- 2. Donner leurs formules semi développées et leurs formules
- 3. Soient les molécules de formules brutes suivantes :

- a. Pour chacune d'elles, donner la représentation de lewis et les formules développées.
- b. Quelle est l'atomicité de chacune d'elles ?

Exercice n°5:

Compléter le tableau suivant:


Nom du composé	Formule ionique	Formule statistique
Sulfate de calcium		
	(Fe ²⁺ + 2Cl ⁻)	
		(NH ₄) ₂ CO ₃
Hydroxyde de magnésium		
	$(A\ell^{3+} + PO_4^{3-})$	
		KNO ₃

Exercice n°6:

- 1. Donner la formule ionique et la formule statistique des composés formés par les couples suivants : $(Fe^{2+}; O^{2-})$; $(Pb^{2+}; I^{-}); (Fe^{3+}; OH^{-}); (Ag^{+}; NO_{3}^{-}); (Ca^{2+}; SO_{4}^{2-}); (K^{+}; Cr_{2}O_{7}^{2-}); (Ba^{2+}; Cl^{-});$ $(NH_4^+; PO_4^{3-}); (Ca^{2+}; NO_3^-); (K^+; PO_4^{3-}); (NH_4^+; C_2O_4^{2-})$
- 2. Donner le nom des composés ioniques obtenus ?
- 3. Donner la formule statistique des composés ioniques dont les noms suivent :

Sulfate d'ammonium; carbonate de calcium; fluorure de fer (II); oxyde de fer (III); dichromate de sodium; phosphate de baryum; permanganate d'ammonium; sulfate de fer (III); carbonate de potassium; chlorure de zinc; chlorure d'argent ; phosphate de calcium ; oxyde d'aluminium ; carbure de calcium.

© Wahab Diop / 2023 – https://physiquechimie.godaddysites.com

<u>Secondes S – 2022/2023</u>

Exercice n°7:

On donne le tableau ci – dessous :

Ions	oxalate	phosphate	aluminium	ammonium	sulfate	fer (II)	peroxodisulfate	calcium
Formules	$C_2 O_4^{2-}$	PO_4^{3-}	Al^{3+}	$N{H_4}^+$	SO ₄ ²⁻	Fe ²⁺	$S_2 O_8^{2-}$	Ca ²⁺

1. Donner les formules ioniques et statistiques des composés ioniques dont les noms suivent :

a. Péroxodisulfate d'ammonium

b. Phosphate de fer (II)

c. Sulfate de calcium

d. Oxalate d'aluminium

2. Donner le nom des composés ioniques ci – dessous :

a. $Fe(S_2O_8)$ b. $Al_2(C_2O_4)_3$

c. $(NH_4)_3 PO_4$

d. FeSO₄

Exercice n°8:

1- Donner toutes les formules développées possibles des molécules suivantes :

 $C_{2}H_{5}P\;;\;C_{2}H_{6}S\;;\;C_{3}H_{6}Cl_{2}\;;\;C_{3}H_{8}O\;;\;C_{3}H_{9}N\;;\;SiH_{4}\;;\;H_{2}O$