

Année scolaire: 2023-2024 Cellules de Sciences Physiques

ye - Dakar

SERIE D'EXERCICES SUR GENERALITES SUR LE MOUVEMENT

EXERCICE 1:

Un automobiliste quitte Dakar à 7h30min et se dirige vers Saint-Louis distant environ de 280km. Il arrive à Thiès où il fait une escale de 1h30min. De Thiès à Saint-Louis l'automobile roule à une vitesse constante de 80km/h; il arrive ainsi à destination à 12h18min. La distance Dakar-Thiès est de 80km.

Classe: Seconde S

- 1/ Evaluer la durée du trajet Thiès-Saint-Louis.
- 2/ Calculer la vitesse moyenne du véhicule entre Dakar-Thiès en m/s et en km/h.
- 3/ Que vaut cette vitesse moyenne entre Dakar-Saint-Louis

EXERCICE 2:

On lâche un mobile sur un banc a coussin d'air incline par rapport à l'horizontal. Avec un système enregistreur, on visualise les positions successives d'un point A du mobile. Les enregistrements sont séparés d'une durée τ =40 ms. Les différentes positions de A sont repérées par l'abscisse x sur un axe parallèle à la trajectoire, l'origine O étant fixée à la position de départ de A. on obtient le tableau suivant :

t	0	τ	2τ	3τ	4τ	5τ	6τ	7τ	8τ	9τ	10τ
x (cm)	0	4,2	8,7	13,4	18,6	24,0	29,8	35,8	42,2	49,0	56,0

- 1/ Calculer la valeur de la vitesse de A entre t=τ et t=5τ
- 2/ Dresser le tableau des valeurs des vitesses instantanées de A en m.s⁻¹ aux dates indiquées.

t	τ	2τ	3τ	4τ	5τ	6τ	7τ	8τ	9τ
V (m.s ⁻¹)									

- 3/ Construire la courbe V=f (t). Echelle : 1 cm pour 0,2 m.s⁻¹ et 1 cm pour τ.
- 4/ Trouver la relation mathématique entre V et t.
- 5/ Quelle est la nature du mouvement du mobile ? Justifier.

EXERCICE 3:

Les résultats de l'enregistrement des positions successives à différentes dates de deux coureurs A et B qui se disputent la victoire sont consignés dans le tableau ci- dessous.

 x_1 et x_2 représentent les positions successives respectives des coureurs A et B.

t(s)	0	2	4	6	8	10
$x_1(m)$	0	8	16	24	32	40
$x_2(m)$	15	21	27	33	39	45

- 1°) Tracer sur un même axe(x'Ox) les positions successives des deux coureurs.
- 2°) Déterminer les vitesses v_1 et v_2 ainsi que les positions initiales x_{o1} et x_{o2} des deux coureurs.
- 3°) Etablir les équations horaires x_1 (t)et x_2 (t) des mouvements des coureurs A et B.
- 4°) Le coureur A rattrapera-t-il le coureur B si la ligne d'arrivée est à 50m de la position initiale de A.
- 5°) Si oui, préciser la position et la date de rattrapage.

Si non, quelle devrait être la valeur minimale de la vitesse du coureur A pour qu'il puisse rattraper le coureur B sur le fil (c'est- à- dire sur la ligne d'arrivée) ?

EXERCICE 4:

Deux véhicules, M₁ et M₂, partent respectivement des villes A et B au même instant. Les villes A et B sont distantes de 120 km. On considère rectiligne la route qui les relie.

Le véhicule M_1 se dirige vers B à la vitesse V_1 =72km/H et M_2 vers A à V_2 =108km/H.

- 1/ Donner, justification à l'appui, la nature du mouvement de chaque véhicule.
- 2/ En fixant l'origine des espaces en A et l'origine des dates l'instant de départ des véhicules:
- a/ Ecrire les équations horaires des mouvements de chaque véhicule; l'axe x'x est orienté vers B. En déduire la date de rencontre de M₁ avec M₂. Préciser leur lieu de rencontre.
- b/ A quelle date la distance séparant M₁ et M₂ avant rencontre est-elle de 80km?
- c/ Déterminer la date à laquelle la distance entre M₁ et M₂, après le croisement, vaut 80km.

EXERCICE 5:

Un point a un mouvement rectiligne et uniforme dans un plan muni d'un repère (OX, OY).

A l'aide d'un chronomètre, on détermine les dates $t_o = 0s$; $t_1 = 1s$ et t_2 de passage du mobile respectivement par les points M_o (x_o, y_o) ; $M_1(x_1, y_1)$ et $M_2(x_2, y_2)$.

Les coordonnées du vecteur vitesse sont : Vx = 0.8 m/s et Vy = 0.6 m/s.

On donne : $x_1 = 1 \text{ m}$; $y_1 = 0.5 \text{ m}$; $x_2 = 2 \text{ m}$

- 11.1 Placer le point M₁.Desssiner le vecteur vitesse. Echelle : 1Cm pour 0,5 m et 1Cm pour 0,5 m/s.
- 11.2 Calculer le module du vecteur vitesse
- 11.3 Dessiner la trajectoire de M.
- 11.4 Quelles sont les coordonnées du point Mo.
- 11.5 Calculer la valeur de t₂.

EXERCICE 6:

Le vecteur position d'un mobile qui se déplace dans le plan (OX, OY) a pour coordonnées

variables dans le temps : x = t y = 2t + 2

Le mouvement débute à l'instant t = 0.

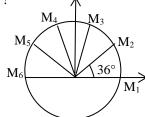
- 1. On considère trois points A, B et C du plan tels que A (-1m; 1m) B (0,5 m; 5m) C (2 m; 5m)
- a. Le mobile passe-t-il par A? Par B? Par C? Justifier.
- b. Construire les positions du mobile aux instants to =0s $t_1 = 1$ s $t_2 = 2$ s $t_3 = 3$ s t=3,5 s.

Quelle est la nature de la trajectoire ?

- c. Donner les caractéristiques du vecteur vitesse v du mobile (intensité, sens, direction). Représenter v un point de la trajectoire.
- 2. Un autre mobile quitte à l'instant le point P (3m; 0m) et se déplace de manière uniforme suivant la droite d'équation x = 3.
- a. Les deux mobiles peuvent-ils se rencontrer? Si oui en quel point?
- b. Avec quelle vitesse le second mobile doit-il se déplacer pour que la rencontre puisse avoir lieu ?

EXERCICE 7:

Un disque tourne autour de son axe à raison de 120 tours / mn.


- 1- Calculer sa vitesse angulaire ω. En déduire la période T et la fréquence N.
- 2- Calculer la vitesse V_A d'un point A du disque situé à 15 cm du centre.

EXERCICE 8:

La figure ci-dessous est la reproduction à **Error!** du mouvement du centre d'un mobile autoporteur attaché en O fixe sur une table horizontale. L'intervalle de temps séparant deux marques consécutives vaut τ =80ms.

Distance entre chaque point est 2,2 cm; tous les angles sont identiques; rayon du cercle R= 3,5 cm.

- 1/ Que peut-on dire du mouvement considéré ? Pourquoi ?
- 2/ Calculer la vitesse linéaire V₂ à l'instant t₂ au point M₂.
- 3/ En déduire la vitesse angulaire ω du mobile. Préciser les unités.
- 4/ Représenter le vecteur vitesse du mobile aux instants t₂ et t₅ en utilisant l'échelle:1cm → 1m/s
- 5/ Le vecteur vitesse est-il constant au cours du temps?
- 6/ Calculer la vitesse angulaire en tours/min.

EXERCICE 9:

Un mobile est en mouvement circulaire uniforme. Les équations horaires sont : r=0,1cm et $\theta=\frac{\pi}{2}t+\frac{\pi}{6}$ (en rad).

- 1- Calculer la durée d'un tour du mobile.
- 2- Calculer le nombre de tours par seconde.
- 3-Calculer la distance parcourue par le mobile entre les dates t₁=0s et t₂=5s.