

Année scolaire : 2023-2024 Cellule de Sciences Physiques

Classe : 2S

SÉRIE C6 : GÉNÉRALITÉS SUR LES SOLUTIONS AQUEUSES

EXERCICE 1

- 1) Une solution de volume V = 250 mL, est obtenue en dissolvant 12 mmol de saccharose dans de l'eau pure. Calculer la concentration molaire de la solution en saccharose.
- 2) Déterminer la quantité de matière d'acide benzoïque ($C_7H_6O_2$) contenue dans un volume V = 23 mL d'une solution d'acide benzoïque de concentration molaire $C = 1,5.10^{-2}$ mol.L⁻¹. Endéduire sa masse.

On donne : $M(C) = 12 \text{ g.mol}^{-1}$; $M(H) = 1 \text{ g.mol}^{-1}$; $M(O) = 16 \text{ g.mol}^{-1}$.

EXERCICE 2

- 1) On introduit 1,248g de sulfate de cuivre anhydre CuSO₄ dans une fiole jaugée de 500 mL que l'on complète avec de l'eau distillée jusqu'au trait de jauge.
 - **a-** Calculer la masse molaire du sulfate de cuivre.
 - **b-** Calculer la concentration molaire de la solution de sulfate de cuivre.
- 2) On introduit 1,248 g de sulfate de cuivre pentahydraté (CuSO₄, 5H₂O) dans une fiole jaugéede 500 mL que l'on complète avec de l'eau distillée. Répondre aux mêmes questions que précédemment.

On donne: $M(Cu) = 63.5 \text{ g.mol}^{-1}$; $M(S) = 32 \text{ g.mol}^{-1}$; $M(O) = 16 \text{ g.mol}^{-1}$.

EXERCICE 3

- 1) Un adolescent doit absorber par jour 75 mg de vitamine C ($C_6H_8O_6$) de masse molaire M = 176 g.mol⁻¹. Calculer la quantité de matière de vitamine C correspondante.
- 2) Un jus de fruit contient de la vitamine C à la concentration molaire C = 2,3 mmol.L⁻¹ Calculer le volume de jus de fruit qu'un adolescent doit boire dans la journée pour absorber sa quantité quotidienne de vitamine C.

EXERCICE 4

On considère trois solutions de même concentration $C = 0.1 \text{ mol.L}^{-1}$;

- solution de sulfate de potassium K₂SO₄,
- solution de sulfate d'aluminium Al₂(SO₄)₃
- solution de phosphate de potassium K₃PO₄.
- 1) Ecrire les équations-bilans de dissolution de chacun des trois composés ioniques.
- 2) Déterminer la concentration molaire des ions présents dans chacune des solutions.
- 3) Vérifier la neutralité électrique de la solution

EXERCICE 5

On prépare quatre solutions en introduisant :

- 0,05 mol de KCl dans 0,25 litre d'eau;
- \bullet 0,05 mol de NiCl₂ dans 0,5 L;
- ❖ 0,1 mol de FeCl₂, 4H₂O dans 0,5 L;
- ❖ 0,05 mol de FeCl₃, 6H₂O dans 1L.
- 1) Ecrire les équations-bilans des réactions de dissolution.
- 2) Classer les solutions par ordre croissant de concentration en ions chlorure.
- 3) Calculer la concentration des ions chlorure dans le mélange des quatre solutions.

EXERCICE 6:

- 1) On dissout 0,74 g d'hydroxyde de calcium $Ca(OH)_2$ dans un volume d'eau V=2L pour obtenir une solution S_1 .
- a) Calculer la concentration massique de la solution et en déduire la molarité.
- **b**) Donner l'équation de dissolution du composé dans l'eau et calculer les concentrations molaires des ions présents dans la solution obtenue.
- 2) On dissout une masse $m_1 = 0.08$ g de soude NaOH et une masse $m_2 = 0.06$ g de potasse KOH dans V = 300 ml d'eau pour obtenir une solution S_2 .
 - Calculer les concentrations molaires des ions présents dans la solution S₂.
- 3) On prélève 300 ml de la solution S_1 qu'on mélange avec 200 ml de la solution S_2 pour obtenir une solution S_3 . Calculer les concentrations des ions présents dans la nouvelle solution S_3

Données: Masses molaires en g/mol: Ca: 40; O: 16; H: 1; Na: 23; K: 39

Année scolaire : 2023-2024 Cellule de Sciences Physiques

Classe : 2S

SÉRIE C6 : GÉNÉRALITÉS SUR LES SOLUTIONS AQUEUSES

EXERCICE 7:

- On désire préparer un litre de solution mère de nitrate de fer III $Fe(NO_3)_3$ de concentration $C_0 = 0,1$ mol. L^{-1} . Quelle masse de ce produit doit-on peser ?
- 2) A partir de cette solution, on désire préparer un volume V = 250 mL d'une solution fille de concentration $C = 2.10^{-3}$ mol.L⁻¹. Quel volume de la solution mère doit-on prélever ?
- 3) Calculer les concentrations des ions présents dans la solution fille.
- 4) Vérifier la neutralité électrique de la solution.

On donne les masse molaire atomiques: $M(Fe) = 55.8 \text{ g.mol}^{-1}$; $M(N) = 14 \text{ g.mol}^{-1}$; $M(O) = 16 \text{ g.mol}^{-1}$.

EXERCICE 8:

Une solution S_1 est obtenue par dissolution d'une masse m = 3,42 g de sulfate d'aluminium de formule $Al_2(SO_4)_3$ dans un volume V = 250 ml.

- 1) Calculer la masse molaire du composé et en déduire sa concentration molaire volumique.
- 2) La dissociation du sulfate d'aluminium dans l'eau donne les ions Al^{3+} et SO_4^{2-} . Ecrire l'équation-bilan de dissociationet en déduire la concentration molaire des ions Al^{3+} et celle des ions SO_4^{2-} .
- 3) On ajoute à S_1 500 ml d'eau et on obtient S_2 . Quelles sont les nouvelles concentrations molaires des jons Al^{3+} et SO_4^{2-} ?
- 4) On ajoute à S_2 une masse m = 1,335 g de chlorure d'aluminium $AlCl_3$ (le volume de S_2 reste constant), on obtient une solution S_3 . Déterminer la nouvelle concentration des ions Al^{3+}

EXERCICE 9:

- 1) On désire préparer un litre de solution mère de chlorure de cuivre II (CuCl₂) de concentration Co = 0,1mol.L⁻¹. Quelle masse de ce produit doit-on peser ? Citer les matériels utilisés lors de l'opération conduisant à cette solution mère.
- A partir de cette solution, on désire préparer un volume V = 250 mL d'une solution fille de concentration $C = 2.10^{-3}$ mol.L⁻¹. Quel volume de la solution mère doit-on prélever ? Citer les matériels à utiliser pour la préparation de cette solution fille.
- 3) Calculer les concentrations des ions présents dans la solution fille.
- 4) Vérifier la neutralité électrique de la solution.

On donne les masse molaire atomiques : M(Cl) = 35.5 g.mol⁻¹; M(Cu) = 65 g.mol⁻¹.

EXERCICE 10:

Une solution d'acide chlorhydrique HCl a une densité d = 1,27. Le pourcentage en masse d'acide pur dans la solutionest égal à P = 25%

- 1) Montrer que la concentration molaire de la solution est sous la forme $C = \frac{P\rho_0 d}{100M}$ avec ρ_0 la masse volumique de l'eau et M la masse molaire de l'acide.
- 2) Calculer la concentration molaire de la solution sachant que $\rho_0 = 1$ g/cm³,
- 3) On prélève 10 ml de la solution qu'on dilue à 2L

Faire l'inventaire du matériel nécessaire et décrire le protocole de cette opération.

- a) Donner l'équation de la dissolution du gaz acide chlorhydrique dans l'eau et calculer les concentrations molaires des différentes espèces ioniques en solution.
- b) Calculer la densité d' de la nouvelle solution obtenue.