EXERCICES SUR ENERGIE MECANIQUE TOTALE

Remarque: Dans ces exercices, il est possible d'en résoudre certains par le théorème de l'énergie cinétique, seulement il est clair que le but ici est de se familiariser aux théorèmes relatifs à l'énergie mécanique.

Exercice 1

Un petit objet ponctuel S , de masse $\mathrm{m}=2,00 \mathrm{~kg}$, glisse sans frottements sur une piste horizontale (HA). Il aborde au point A un tronçon de piste plane (AB) inclinée d'un angle $\alpha=20,0^{\circ}$ par rapport à l'horizontale.
Sa vitesse au point A est $V_{o}=8,00 \mathrm{~m} \cdot \mathrm{~s}^{-1}$. Déterminer la longueur $\mathrm{L}=\mathrm{AC}$ dont l'objet S remonte sur la piste AB .

Exercice 2

Un fil inextensible de longueur $\mathrm{L}=80 \mathrm{~cm}$ et de masse négligeable est attaché au point fixe O . Il soutient un solide ponctuel S de masse $\mathrm{m}=500 \mathrm{~g}$.
On écarte l'ensemble d'un angle θ_{0} vers la gauche et on le lâche sans vitesse initiale $\theta_{0}=$ 70°).
Une pointe fixée au point O , sur la verticale passant par $\mathrm{O}\left(\mathrm{OO}_{1}=40 \mathrm{~cm}\right)$ bloque le fil.

1) Calculer l'angle maximal θ_{1} dont remonte S en supposant qu'il y a conservation de l'énergie mécanique.
2) Faire un schéma à l'échelle $1 \mathrm{~cm} \leftrightarrow 10 \mathrm{~cm}$, sur lequel figureront les positions initiales $\left(\theta_{0}\right)$ et finale $\left(\theta_{1}\right)$. Retrouver alors, d'une manière très simple, le résultat précédent.

Exercice 3

On considère le dispositif ci-contre où la masse de la poulie et du fil sont négligeables. A glisse sans frottement sur le plan incliné. Quelle est la vitesse de A lorsqu'il a parcouru une distance ℓ le long du plan incliné, après que l'ensemble ait été libéré sans vitesse initiale. On donne : $\mathrm{m}_{\mathrm{A}}=800 \mathrm{~g}, \mathrm{~m}_{\mathrm{B}}=200 \mathrm{~g}, \alpha=45^{\circ}$, $\ell=40 \mathrm{~cm}$ et $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$.

Exercice 4

Un solide de masse $\mathrm{m}=300 \mathrm{~g}$ est suspendu à l'extrémité d'un ressort qui s'allonge de $8,6 \mathrm{~cm}$ lorsque l'ensemble est en équilibre.

1) Quel est le coefficient de raideur du ressort?

Un opérateur soulève le solide de sorte que le ressort reprenne sa longueur à vide, et alors, il lâche le solide sans lui communiquer de vitesse. Quel sera le mouvement ultérieur du solide s'il n'y a pas de frottement?
2) Avec quelle vitesse le solide repasse-t-il par sa position d'équilibre?
3) Quel sera l'allongement maximal du ressort?
4) Quelle est la vitesse du solide lorsque l'allongement est 4 cm ?

On pourra prendre comme état de référence pour l'énergie potentielle dans le champ de pesanteur, l'état où le solide occupe sa position d'équilibre.

Exercice 5

Qu'est qu'un pendule de torsion? Comment s'exprime son énergie mécanique totale?
On dispose d'un pendule de torsion constitué d'un fil métallique vertical, de constante de torsion $\mathrm{C}=0,2$
N.m.rad ${ }^{-1}$ de d'un disque de masse $\mathrm{m}=220 \mathrm{~g}$, de rayon $\mathrm{r}=15 \mathrm{~cm}$, mobile dans un plan horizontal. Le disque est soudé en son centre au fil métallique.

1) De quel angle faut-il faire tourner le disque par rapport à sa position d'équilibre si on veut que la vitesse angulaire maximale du disque, lâché sans vitesse initiale soit $\omega_{\mathrm{m}}=6 \mathrm{rad} / \mathrm{s}$?
2) Même question avec $\omega_{\mathrm{m}}=12 \mathrm{rad} / \mathrm{s}$?

On rappelle que le moment d'inertie d'un disque par rapport à son axe est . $J=\frac{1}{2} m r^{2}$

Exercice 6

Un petit objet quasi ponctuel S , de masse $\mathrm{m}=200 \mathrm{~g}$ est abandonné sans vitesse initiale à partir d'un point A d'une piste ayant la forme indiquée à la figure.
Tout au long du mouvement, le mobile est soumis à une force de frottement d'intensité constante $f=0,3 \mathrm{~N}$ et de direction toujours parallèle à la piste. On donne: $\mathrm{AB}=\mathrm{BC}=1,2 \mathrm{~m} ; \alpha=30^{\circ}$
(les deux plans sont inclinés d'un même angle α)

1) Déterminer les intensités des vitesses acquises par le mobile lorsqu'il passe aux points B et C.

2) Déterminer la distance $C D, D$ étant le point d'arrêt du mobile sur la piste avant son retour en sens inverse.
3) Le mobile finit par s'arrêter définitivement entre B et C en un point G. Déterminer la distance totale parcourue par le mobile depuis son point de départ A. En déduire la longueur CG et le sens du mouvement du mobile juste avant son arrêt en G.

Exercice 7

Une piste ABC est formée de deux tronçons:

- AB est un arc de cercle de rayon $\mathrm{r}=15 \mathrm{~m}$,
- BC est une partie rectiligne et horizontale de longueur $\ell=15 \mathrm{~m}$.

Un cube de masse $\mathrm{m}=1 \mathrm{~kg}$, assimilable à un point matériel est lancé à partir du point A , vers le bas avec une vitesse initiale $\mathrm{v}_{\mathrm{A}}=6 \mathrm{~m} / \mathrm{s}$. Le point A est repéré par
 rapport à la verticale OB par l'angle $\alpha=60^{\circ}$.

1) Sur la partie $A B$ les frottements sont négligeables. Par l'application du théorème de l'énergie mécanique, déterminer la vitesse du cube lors de son passage au point B.
2) Arrivé en B le cube aborde la partie horizontale BC. Sur ce tronçon existent des forces de frottements d'intensité constante f. Il arrive en C avec une vitesse $\mathrm{v}_{\mathrm{C}}=12,5 \mathrm{~m} / \mathrm{s}$. Calculer f.
3) Arrivé en C le cube heurte l'extrémité d'un ressort de constante de raideur $\mathrm{k}=500 \mathrm{~N} / \mathrm{m}$ et le comprime. Calculer la compression maximale x_{0} du ressort.

Exercice 8

Une glissière est constituée d'une partie rectiligne AB de longueur $\ell=1 \mathrm{~m}$ inclinée d'un angle $\alpha=30^{\circ}$ par rapport à l'horizontal et d'un arc de cercle $\overparen{B C}$ de centre O , de rayon $\mathrm{r}=2 \mathrm{~m}$, d'angle au sommet $\theta_{\mathrm{O}}=(\overrightarrow{O B}, \overrightarrow{O C})=60^{\circ}$ (voir figure). Un solide ponctuel de masse $\mathrm{m}=100$ g est lâché du point A sans vitesse initiale.

1) Calculer l'énergie potentielle de pesanteur du solide aux points A et B. On choisira l'état de référence des énergies potentielles le plan horizontal passant par B et l'origine des altitudes en B.
2) En supposant les frottements négligeables et en appliquant le théorème de l'énergie mécanique, calculer :

a) La vitesse du solide en B.
b) La valeur de l'angle $\theta_{1}=(\overrightarrow{O D}, \overrightarrow{O C})$ sachant que le solide arrive en D avec la vitesse $\mathrm{V}_{\mathrm{D}}=3,85 \mathrm{~m} / \mathrm{s}$.
3) En réalité sur la partie circulaire BC , il existe des frottements ainsi, la vitesse du solide en D a diminué de un tiers de sa valeur sans frottement. Déterminer l'intensité des forces de frottements supposée constante responsable de cet écart.

Exercice 9

Une piste verticale est formée d'une portion rectiligne $A B=1,2 \mathrm{~m}$ incliné d'un angle $\theta=45^{\circ}$ sur l'horizontale et d'une partie circulaire BCD raccordée en B à AB , de rayon $r=25 \mathrm{~cm}$ (voir figure).
Un chariot supposé ponctuel de masse $\mathrm{m}=180 \mathrm{~g}$ est abandonné en A sans vitesse initiale. On choisit comme référence de l'énergie potentielle de pesanteur le plan horizontal passant par B. L'origine des espaces est prise au point $\mathrm{B}\left(z_{B}=0\right)$

1) Montrer que l'énergie mécanique au point A vaut $E m_{A}=1,527 \mathrm{~J}$.
2) En supposant les frottements négligeables, en déduire, par l'application du théorème de l'énergie mécanique, la vitesse du chariot au point B, C et D.

3) En réalité, les frottements ne sont négligeables que sur $B C D$ et la nouvelle vitesse en D n'est que la moitié de celle calculée à la question 2 .
a) Calculer la variation de l'énergie mécanique du chariot entre A et D .
b) En déduire la valeur de la force de frottement supposée constante qui s'exerce sur le chariot.

Exercice 10

Un solide ponctuel M est relié à un point fixe O par l'intermédiaire d'un fil de longueur ℓ non élastique. Ce solide M de masse m peut décrire un cercle de rayon ℓ dans le plan vertical (voir figure)

1) On lance le solide M au point A avec une énergie cinétique $E c_{0}$.
a) En appliquant le théorème de l'énergie cinétique, donner l'expression de la vitesse angulaire ω en fonction de $E c_{0}, \theta, \mathrm{~m}, \ell$ et g .
b) Retrouver cette expression en appliquant la conservation de l'énergie mécanique.
2)

a) Pour quelles valeurs θ_{0} de θ peut-on avoir $\omega=0$? Cela est-il toujours possible quelque soit $E c_{0}$?

b) Calculer $E c_{0}$ pour que l'on ait $\theta_{0}=60^{\circ}$. On donne: $m=1 \mathrm{~kg}$; $g=10 \mathrm{~N} / \mathrm{kg} ; \ell=1 \mathrm{~m}$.

