SERIE D'EXERCICES SUR GENERALITES SUR LES SOLUTIONS AQEUSES

On donne : $M(Fe)=56g.mol^{-1}$; $M(N)=14g.mol^{-1}$; $M(O)=16g.mol^{-1}$; $M(Cu)=63g.mol^{-1}$; $M(S)=32g.mol^{-1}$ $M(Zn)=65g.mol^{-1}$;

EXERCICE 1:

1/ Une solution de volume V=250 mL, est obtenue en dissolvant 12 mmol de saccharose dans de l'eau.

Quelle est la concentration molaire de saccharose?

2/ Quelle est la quantité d'acide benzoïque contenue dans un volume V=23 mL d'une solution d'acide benzoïque à la concentration molaire C=1,5.10⁻² mol.L⁻¹.

EXERCICE 2:

1/ On introduit cette fois 1,248g de sulfate de cuivre anhydre CuSO₄ dans une fiole jaugée de 500 mL que l'on complète avec de l'eau distillée.

a/ Calculer la masse molaire du sulfate de cuivre.

b/ Quelle est la concentration molaire de la solution de sulfate de cuivre. En déduire sa concentration massique

2/ On introduit 1,248 g de sulfate de cuivre penta hydraté (CuSO₄, 5H₂O) dans une fiole jaugée de 500 mL que l'on complète avec de l'eau distillée. Répondre aux mêmes questions que précédemment.

EXERCICE 3:

1/ Un adolescent doit absorber 75 mg de vitamine C de masse molaire M=176 g.mol⁻¹ par jour. Quelle est la quantité de vitamine C correspondante?

2/ Un jus de fruit contient de la vitamine C à la concentration molaire C=2,3 mmol.L⁻¹.Quel volume de jus de fruit un adolescent doit-il boire dans la journée pour absorber sa quantité quotidienne de vitamine C?

EXERCICE 4:

Compléter le tableau suivant:

Formule	C (mol.L ⁻¹)	[Anion] (mol.L-1)	[Cation](mol.L ⁻¹)
MgSO ₄	0,035		
CaCl ₂			0,104
Na ₂ CO ₃			0,27
Na ₃ PO ₄	0,063		
FeCl ₃		0,57	

EXERCICE 5:

On mélange un volume $V_1=100 \text{cm}^3$ d'une solution de sulfate de cuivre(II) (CuSO₄) de concentration $C_1=0,50 \text{ mol.L}^{-1}$ et un volume $V_2=150 \text{cm}^3$ d'une solution de sulfate de zinc (ZnSO₄) de concentration $C_2=0,30 \text{ mol.L}^{-1}$.

Calculer les concentrations molaires des ions présents dans le mélange.

EXERCICE 6:

1/ On désire préparer un litre de solution mère de nitrate de fer III (Fe(NO₃)₃) de concentration C_0 =0,1mol.L⁻¹. Quelle masse de ce produit doit-on peser?

2/ A partir de cette solution, on désire préparer un volume V=250mL d'une solution fille de concentration C=2.10⁻³mol.L⁻¹. Quel volume de la solution mère doit-on prélever?

3/ Calculer les concentrations des ions présents dans la solution fille.

4/ Vérifier la neutralité électrique de la solution.

EXERCICE 7:

On prépare quatre solutions en introduisant:

- ▶ 0,05 mol de KCl dans 0,25 litre d'eau ;
- ► 0,05 mol deNiCl₂ dans 0,5 L;
- ▶ 0,1 mol de (FeCl₂,4H₂O) dans 0,5 L
- ► 0,05 mol de (FeCl₃,6H₂O) dans 1L.
- 1/ Ecrire les réactions de dissolution.
- 2/ Quelles sont les solutions de même concentration en ions chlorure, celle de concentration la plus élevée et celle de concentration la plus faible?