

Année scolaire: 2014-2015 Cellule de Sciences Physiques

Classe: Premières S

SERIE D'EXERCICES SUR P4: CALORIMETRIE

Exercice 1:

Calculer la quantité de chaleur nécessaire pour élever la température de l'air d'une chambre de 0°C à 1°C.

On donne: masse volumique de l'air p = 1,30 g/L. Dimensions de la chambre: 5mx4mx2,5m. Capacité thermique massique de l'air Cair = 820 J/kg.K.

Exercice 2:

- 1.Un calorimètre contient 95g d'eau à 20°C. On ajoute 71g d'eau à 50°C. Quelle serait la température d'équilibre si l'on pouvait négliger la capacité calorifique du calorimètre ?
- 2.La température observée est de 31,3°C. Calculer la capacité calorifique du vase et de ses accessoires.
- 3. Dans ce calorimètre contenant 100g d'eau à 15°C, on plonge un échantillon métallique de masse 25g sortant d'une étuve à 95°C. La température d'équilibre est de 16,7°C. Calculer la chaleur massique du métal.

Exercice 3:

Un vase calorimétrique contient 350g d'eau à 16°C. La capacité calorifique du vase et de ses accessoires est $\mu = 80 \text{ J.K}^{-1}$.

1. On plonge dans l'eau de ce calorimètre, un morceau de glace de masse 50g prélevé dans un congélateur à la température de -18°C. Quelle est la température d'équilibre sachant que toute la glace a fondu ?

2.On ajoute dans le calorimètre un nouveau morceau de glace de masse 50g, toujours prélevé dans un congélateur à la température de -18°C. On constate que ce nouveau morceau de glace ne fond pas entièrement. Quelle est la masse de glace restant et la température d'équilibre X

Exercice 4:

- 1.Un calorimètre contient 100g d'eau à 18°C. On y verse 80g d'eau à 60°C. Quelle serait la température d'équilibre si la capacité thermique du calorimètre et de ses accessoires était négligeable ?
- 2.La température d'équilibre est en faite 35,9°C. En déduire la capacité thermique du calorimètre et de ses accessoires.
- Capacité thermique massique de l'eau : C_{eau} = 4,18.10³ J.Kg⁻¹.K⁻¹.
- 3.On considère de nouveau le calorimètre qui contient 100g d'eau à 18°C. On y plonge un morceau de cuivre de masse 20g initialement placé dans de l'eau en ébullition. La température d'équilibre s'établit à 19,4°C. Calculer la capacité thermique massique du cuivre.
- 4.On considère encore le même calorimètre contenant 100g d'eau à 18°C. On y plonge maintenant un morceau d'aluminium de masse 30,2g et de capacité thermique massique 920 J.Kg⁻¹.K⁻¹ à une température de 90°C. Déterminer la température d'équilibre.
- 5.L'état initial restant le même : le calorimètre contenant 100g d'eau à 18°C ; on y introduit maintenant un glaçon de masse 25g à 0°C. Calculer la température d'équilibre.
- Chaleur latente de fusion de la glace (à 0°C): L_f = 3,34.10³ J.Kg⁻¹.
- 6.L'état initial est encore le même : le calorimètre contenant 100g d'eau à 18°C; on y introduit un glaçon de masse 25g provenant d'un congélateur à la température de -18°C. Quelle est la température d'équilibre?
- Capacité thermique massique de la glace : C_g = 2,10.10³ J.^{Kg-1}.K⁻¹.

Dans un calorimètre de capacité thermique C_{cal} = 140 J.°C⁻¹, on verse une masse m₁ = 200g d'eau. On relève la température

 $\theta_1 = 20$ °C. On introduit alors une masse $m_2 = 60$ g de glace prise à $\theta_0 = 0$ °C.

Quelle est la température d'équilibre ? Conclure. On donne : L_f= 335 KJ.Kg⁻¹ ; C_{eau} = 4,18 KJ.Kg⁻¹.K⁻¹

Exercice 6:

Dans un calorimètre de capacité calorifique µ = 56 J.K-1, on verse 100g d'eau. La température d'équilibre est 25 °C. On introduit alors 50g de glace à -10°C. On laisse s'établir l'équilibre thermique.

- 1. Dans quels domaines, à priori, la température finale peut-elle se situer? Montrer que celle-ci ne peut-être inférieure ou égale à 0°C.
- 2.On suppose que toute la glace fond et que la température finale du système est supérieure à 0°C. Ecrire la relation qui permet de calculer cette température finale.

Données: $L_f = 333 \text{ KJ.kg}^{-1}$; $c_g = 2,10.10^3 \text{ J.kg}^{-1}.\text{K}^{-1}$; $c_{eau} = 4180 \text{ J.kg}^{-1}.\text{K}^{-1}$

Calculer la température finale ; ce résultat est-il en accord avec l'hypothèse faite.

3.On suppose qu'il reste de la glace en équilibre avec de l'eau. La température finale est donc de 0°C. Calculer la masse de glace fondue.

http:physiquechimie.sharepoint.com

Année scolaire: 2014-2015 Cellule de Sciences Physiques

Classe: Premières S

Exercice 7:

On veut refroidir un verre de jus de fruit pris à 30°C. La capacité calorifique du verre et jus est de 550J.K⁻¹. On introduit une certaine masse m de glace à 0°C. On veut que la température de l'ensemble soit de 10°C.

- 1.On admet qu'il n'y a échange de chaleur qu'entre la glace et le verre de jus de fruit. Calculer la masse de glace nécessaire.
- 2. En réalité, la masse de glace nécessaire est-elle supérieure où inférieure à la valeur trouvée ? Pourquoi ?

Exercice 8:

Dans un calorimètre de valeur en eau 400g, renfermant 200g d'eau à 20°C, on introduit 100g de glace à 0°C. La glace va-t-elle fondre entièrement ? Justifier, Quelle est la température d'équilibre obtenue ? On donne $L_f = 335 \text{ KJ.kg}^{-1}$.

Exercice 9:

Dans un calorimètre de capacité thermique C_{cal} = 140 J.°C⁻¹, on verse une masse m₁ = 200g d'eau. On relève la température

 $\theta_1 = 20$ °C. On introduit alors une masse $m_2 = 60$ g de glace prise à $\theta_0 = 0$ °C. Quelle est la température d'équilibre ? Conclure.

 $C_{\text{cau}} = 4,18 \text{ KJ.Kg}^{-1}.\text{K}^{-1}.$ **Données**: $L_f = 335 \text{ KJ.Kg}^{-1}$;

Exercice 10:

1-Un calorimètre de capacité thermique négligeable contient 100g d'eau à 20°C. On y introduit un morceau de glace de masse mg=20g initialement à la température de 0°C. Montrer qu'il ne restera pas de la glace lorsque l'équilibre thermique est atteint. Calculer la température d'équilibre.

2-Dans le système précédent, on ajoute alors un second morceau de glace de masse m'e=20g dont la température est cette fois -18°C. Montrer que, lorsque l'équilibre thermique est atteint, il reste de la glace et que la température d'équilibre est 0°C. Calculer alors les masses d'eau liquide et de glace en présence.

3-Dans l'ensemble précédent, on introduit un autre glaçon identique à la précédente. Quelle est la nouvelle température d'équilibre? Calculer la masse d'eau qui se congèle.

Exercice 11:

1-On plonge dans un calorimètre à la température θ_1 =20°C, de capacité calorifique μ =100J.K⁻¹, contenant une masse m₁=200g d'eau à la température θ₁un bloc de fer de masse m₂=50g et un bloc d'aluminium de masse m_3 =80g à la température θ_2 =100°C. Calculer la température d'équilibre θ , en supposant l'ensemble parfaitement adiabatique.

2-On ajoute ensuite dans le calorimètre un bloc de cuivre à la température θ₂=100°C. Calculer la masse m₄ du bloc de cuivre si la nouvelle température d'équilibre est θ '=33°C.

On donne: CAI=890 Jkg-1.K-1; CFe=460 Jkg-1.K-1; CCu=385 Jkg-1.K-1

Exercice 12:

On donne les chaleurs de réactions chimiques suivantes dans des conditions de température et de pression déterminées :

Sachant que dans ces conditions, la condensation de la vapeur d'eau libère 41 KJ.mol⁻¹, déterminer la chaleur de réaction d'hydrogénation de l'éthylène en éthane.

On considère la combustion du méthane : CH₄ + O₂ → CO₂ + H₂O

1. Equilibrer cette équation.

2.Les réactions suivantes sont exothermiques :

$$C + H_2 \rightarrow CH_4 ; Q_1$$

 $C + O_2 \rightarrow CO_2 ; Q_2$
 $H_2 + \frac{1}{2} O_2 \rightarrow H_2O ; Q_3$

Dans les conditions standard de température et de pression (0°C, 1bar), les chaleur de réactions sont :

 $Q_1 = 75 \text{ KJ}$; $Q_2 = 393 \text{ KJ}$; $Q_3 = 242 \text{ KJ}$

Calculer dans les mêmes conditions, la quantité de chaleur dégagée par la combustion d'un mètre cube de méthane (on assimilera le méthane à un gaz parfait), les gaz étant ramenés à la température initiale.