

SERIE D'EXERCICES SUR REACTIONS CHIMIQUES. EQUATION-BILAN

EXERCICE 1

Equ'ilibrer les équations-bilan suivantes :

a) $C_2H_6 + O_2 \rightarrow CO_2 + H_2O$

b) $Fe_3O_4 + O_2 \rightarrow Fe_2O_3$

c) $C_6H_{12}O_6 \rightarrow C_2H_6O + CO_2$

d) $Na_2O_2 + H_2O \rightarrow Na^+ + OH^- + O_2$ e) $C_nH_{2n+2} + O_2 \rightarrow CO_2 + H_2O$ E_2) $C_nH_{2n-2} + O_2 \rightarrow CO_2 + H_2O$ h) $C_xH_y + O_2 \rightarrow CO_2 + H_2O$

f) $C_nH_{2n} + O_2 \rightarrow CO_2 + H_2O$

 ξI) $C_nH_{2n-2} + O_2 \rightarrow CO_2 + H_2O$

i) Al + Cu²⁺ \rightarrow Al³⁺ + Cu

EXERCICE 2

Le propane a pour formule C₃H₈; il est livré dans des bouteilles d'acier.

1/ Ecrire l'équation-bilan de sa réaction de combustion dans le dioxygène, sachant qu'il se forme exclusivement du dioxyde de carbone et de l'eau.

2/ Quel volume de dioxygène mesuré dans les C.N.T.P. faut-il mettre en œuvre pour assurer la combustion complète de 1 kg de propane? En déduire le volume d'air correspondant.

EXERCICE 3

La combustion complète dans le dioxygène de 224 cm³ d'un corps pur gazeux de formule C_nH_{2n+2} a donné 896 cm³ de dioxyde de carbone et de l'eau

1/ Ecrire l'équation bilan de la réaction

2/ Déterminer la formule de ce corps pur

NB: Les volumes sont mesurés dans les mêmes conditions

La combustion dans le dioxygène de 1L d'un hydrocarbure gazeux C_xH_y a nécessité 5L de dioxygène et a donné 3L de dioxyde de carbone 1/ Ecrire l'équation biles de la combustion de la combust

1/ Ecrire l'équation bilan de la réaction

2/ Déterminer la formule brute de l'hydrocarbure

NB: Les volumes sont mesurés dans les mêmes conditions

EXERCICE 5

On mélange 20 g d'oxyde Fe₂O₃ et 5 g d'aluminium en poudre puis on déclenche la réaction. On observe la formation de fer métal selon l'équation-bilan à équilibrer:

 $Fe_2O_3 + Al \rightarrow Al_2O_3 + Fe$

1/ Quel est le réactif utilisé en excès ?

2/ Calculer les masses des produits formés et celle du réactif en excès à la fin de la réaction.

3/ Quelle masse de soufre faudrait-il mettre en contre pour transformer en sulfure de fer FeS le fer métal ainsi préparé

EXERCICE 7

Le dioxyde de soufre (SO₂) peut être par réaction entre le sulfure de fer FeS₂ (ou pyrite) et le dioxygène. Il se forme en même temps de l'oxyde de fer Fe₂O₃.

1/ Ecrire l'équation-bilan de la réaction.

2/Quel volume de dioxyde de soufre peut-on espérer obtenir à partir d'une tonne de pyrite ? Calculer alors la masse et le volume de dioxygène nécessaire.

3/Le rendement de la réaction, vaut en réalité, 80%. Calculer le volume de dioxyde de soufre effectivement obtenu à partir d'une tonne de pyrite. $M_{Fe}=56 \text{ g.mol}^{-1}$; $M_S=32 \text{ g.mol}^{-1}$

EXERCICE 9

Le sodium réagit avec le dichlore, on obtient du chlorure de sodium NaCl (composé solide).

1/ Ecrire l'équation bilan de la réaction

2/ On fait réagir 0,50 mol de dichlore de 0,10 mol de sodium. On note 2x la quantité de chlorure de sodium formé(x étant l'avancement). Déterminer

a- La quantité de matière de sodium présent,

b- La quantité de matière de dichlore présent.

3/ Déterminer l'avancement maximal x_{max} et donner l'état final du système.

EXERCICE 10

On introduit un fil de fer de masse 11,2 g porté au rouge dans un flacon de dichlore de volume V = 1,20 L. Le flacon s'emplit de fumées rousses de chlorure de fer III FeCla

1/ Ecrire l'équation bilan de la réaction.

2/ Le système étant l'ensemble constitué par le fer et le dichlore, déterminer son état initial

3/ Choisir la grandeur avancement x permettant de déterminer l'état du système au cours de la transformation.

4/ Déterminer la valeur de l'avancement maximal x_{max}. Quel est le réactif limitant?

5/Calculer la quantité de matière du réactif limitant et celle du produit formé.

Donnée: le volume molaire dans les conditions de l'expérience V_m = 24 L.mol⁻¹

