

Devoir de sciences physiques (2 heures)

Exercice1: (6 points)

On met ensemble dans un erlenmeyer, de l'eau et de l'alcool. Après agitation, le milieu ne présente aucune surface de séparation, l'alcool étant miscible à l'eau.

- 1) Quelle est la nature du mélange ainsi constitué ? Définir ce type de mélange et citer deux autres exemples de mélanges de même nature.
- 2) On se propose de séparer les constituants du mélange précédent. Amina dit « je propose la méthode de la filtration car elle met peu de temps ». Issa dit : « je crois que c'est la distillation qui fera mieux notre affaire ».
 - a) Parmi ces deux propositions, quelle est celle qui permet de séparer les constituants du mélange précédent ? Justifier.
 - b) Faire un schéma annoté du montage.
 - c) Dans le cas où vous avez choisi la distillation, quel est le liquide qui sera recueilli le premier comme distillat ? On donne : température d'ébullition : alcool : 78°C ; eau : 100°C.

Exercice 2: (7 points)

Sur une table à coussin d'air on a relevé la trajectoire d'un point M d'un mobile (voir figure). Sur la figure, M_n représente les positions successives du mobile à différentes dates t_n . On note que l'intervalle de temps successive est le même et est égale à $\tau = \frac{1}{20}$ s.

- 1) Calculer la vitesse moyenne de M entre t₁ et t₃; t₁ et t₅; t₁ et t₇.
- 2) Donner les valeurs des vitesses instantanées V_2 , V_4 et V_6 aux dates t_2 , t_4 et t_6 .
- 3) En prenant comme échelle : 1 cm pour 10 cm.s⁻¹, représenter sur la figure les vecteurs vitesses instantanées \overrightarrow{V}_2 et \overrightarrow{V}_6 .
- 4) Détermination de la nature du mouvement :
 - a) Calculer: $V_3 V_2$; $V_4 V_3$; $V_{5-}V_4$; $V_{6-}V_5$
 - b) Quelle est la nature du mouvement ?

Exercice 3: (7 points)

Trois villes A_1 , A_2 et A_3 sont situées le long d'une route rectiligne (voir figure) $A_1A_2=15$ km; $A_1A_3=20$ km. A l'instant de date $t_0=0$ s, un mobile M_1 passe par la ville A_1 et se dirige vers A_2 avec une vitesse constante $V_1=72$ km·h⁻¹.

- 1) Quelle est l'équation horaire de M₁?
- 2) À quel instant t₁ le mobile M₁ passe t-il à la ville A₂?
- 3) À l'instant de date t_0 =0, un mobile M_2 passe par la ville A_2 . Il se déplace dans le même sens que M_1 d'un mouvement rectiligne uniforme de vitesse constante V_2 = 54 km·h⁻¹. À quel instant t_2 et à quel lieu M_1 et M_2 se rejoignent-ils?
- 4) Un mobile M_3 passe par la ville A_2 à l'instant t_3 = 120s. Son mouvement est rectiligne uniforme de vitesse V_3 = 54 km·h⁻¹. À quel instant t'₃ et en quel lieu M_1 rejoint-il M_3 ?
- 5) Un mobile M_4 passe par la ville A_2 à l'instant t_4 = 150s. Quelle doit être sa vitesse minimale pour que M_1 ne le rejoigne pas avant la ville A_3 ?