

Devoir n°1 de Sciences Physiques (2 heures)

Exercice n°1: (8 points)

L'hydratation d'une masse m = 4g d'un alcène A a donné une masse m' = 4,85 g d'un alcool B.

- 1. Montrer que la formule brute de l'alcool B est $C_6H_{14}O$.
- 2. Sachant que la chaîne principale de B comporte 4 atomes de carbone donner les formules semi-développées, noms et classes de ses isomères.
- 3. Pour déterminer la formule exacte de B on procède à son oxydation ménagée par le dichromate de potassium en milieu acide. On obtient un composé B' qui réagit avec la D.N.P.H et rosit le réactif de Schiff.
 - 3.1. Quelle est la fonction chimique B', en déduire la classe de B.
 - 3.2. Quelles sont les formules de B qu'on peut retenir?
 - 3.3. Sachant que le carbone relié au carbone fonctionnel porte un seul atome d'hydrogène, déterminer la formule semi-développée de B.

En déduire les formules semi-développées et noms de B' et A.

- 3.4. Ecrire l'équation-bilan de la réaction d'oxydoréduction de B par les ions dichromates.
- 4. On fait réagir une masse $m_B=10.2~g$ du corps B avec 0,1 mol d'acide méthanoïque. On obtient une masse $m_E=8.576~g$.
 - 4.1. Ecrire l'équation-bilan de la réaction. Quelles sont ses caractéristiques. Nommer le produit organique obtenu.
 - 4.2. Calculer le pourcentage d'alcool estérifié. Ce résultat est-il conforme à la déduction faite à la question 3.1?
 - 4.3. Indiquer un moyen permettant d'atteindre rapidement cette valeur.

On donne:
$$M(C) = 12 \text{ g.mol}^{-1}$$
; $M(H) = 1 \text{ g.mol}^{-1}$; $M(O) = 16 \text{ g.mol}^{-1}$

On rappelle que pour un mélange équimolaire d'alcool et d'acide carboxylique, le rendement dépend de la nature de l'alcool suivant le tableau ci-dessous:

pour un alcool primaire R'-CH ₂ -OH	pprox 67%
pour un alcool secondaire R'-CHOH-R"	$\approx 60\%$
pour un alcool tertiaire	pprox 5%

Exercice 3: (5 points)

Une automobile est arrêtée à un feu rouge au point A. Quand le feu passe au vert l'automobiliste accélère pendant 8s avec une accélération de 2 m.s^{-2} jusqu'au point B où elle arrive avec une vitesse v_1 qu'elle maintient constante pour la suite.

En choisissant un repère orienté vers le sens du mouvement du mobile et pour origine des abscisses le point A et pour origine des temps l'instant où l'automobiliste quitte le feu vert au point A.

- 1. Calculer la vitesse v_1 de l'automobile au point B.
- 2. Calculer la distance AB.
- 3. Donner l'équation horaire x₁(t) de l'automobile dans l'intervalle du temps [0s, 8s].
- 4. Donner l'équation horaire $x'_1(t)$ de l'automobile pour $t \ge 8$ s.
- 5. À l'instant du démarrage de l'automobiliste au feu vert; un camion le dépasse avec une vitesse constante $v_2 = 12 \text{ m.s}^{-1}$.

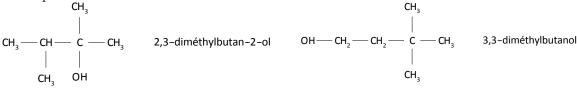
Au bout de combien de temps l'automobile rattrapera – t- elle le camion?

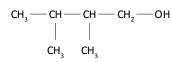
Exercice 2: (7 points)

On considère un mobile M de vecteur vitesse $\overrightarrow{v} = 2\overrightarrow{i} + (4t - 8)\overrightarrow{j}$, passant par l'origine du repère $(O, \overrightarrow{i}, \overrightarrow{j})$ à $\mathbf{t} = 0$ s.

- 1. Déterminer les expressions des vecteurs position \overrightarrow{OM} et accélération \overrightarrow{a} .
- 2. Déterminer l'équation cartésienne de la trajectoire puis la représenter.
- 3. On considère l'instant t_1 où le vecteur vitesse est colinéaire au vecteur $\vec{\imath}$.
 - 3.1.Montrer que $t_1 = 2s.$
 - 3.2. Ecrire les expressions des vecteurs position, vitesse et accélération à cet instant.
 - $3.3.\,\mathrm{Représenter}$ les vecteurs vitesse et accélération sur le graphe à cet instant.
- 4. On considère l'instant t_2 , tel que $t_2 > 0$, où le vecteur vitesse fait un angle $\alpha = 76^{\circ}$ par rapport à [Ox).
 - 4.1.Montrer que $t_2 = 4s.$
 - 4.2. Représenter les vecteurs vitesse et accélération à cet instant.
 - 4.3. Déterminer les composantes tangentielles a_T et normale a_N de l'accélération.
 - 4.4. En déduire le rayon de courbure R au point M2.

On donne : $tg(76^{\circ}) = 4$.



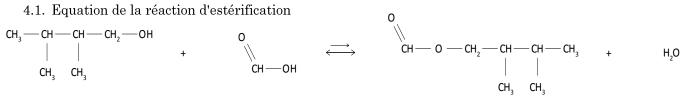

Correction devoir n°1 de Sciences Physiques

Exercice 1

$$1. \quad C_n H_{2n} \, + \, H_2 O \, \rightarrow \, C_n H_{2n+2} O \; ; \; \; \frac{4}{14 \, n} = \frac{4,85}{14 \, n + 18} \, \Rightarrow \, n = 6 \; d'où \; C_6 H_{14} O$$

2. formules possibles de B

3.


- 3.1. B' est un aldéhyde donc B est un alcool primaire (classe I)
- 3.2. On peut retenir le 2,3-diméthylbutanol et le 3,3-diméthylbutanol
- 3.3. B est le 2,3-diméthylbutanol (pour sa formule voir ci-dessus).

3.4. équation bilan de la réaction entre B et les ions Cr₂O₇²⁻

4.

4.1. Equation de la réaction d'estérification

- Caractéristiques: réaction lente, limitée (réversible) et athermique.
- Nom du produit: méthanoate de 2,3-diméthylbutyle
- 4.2. Pourcentage d'alcool estérifié:

$$\eta = \frac{n_E}{M_E \times n_{\text{th}}} \times 100 = \frac{8,576 \times 100}{130 \times 0,1} \approx 66\%$$

- 4.3. D'après le tableau l'alcool est bien de classe (I)
- 4.4. On peut augmenter cette valeur en déplaçant l'équilibre dans le sens de la formation de l'ester par chauffage (augmentation de température) du milieu réactionnel ou par l'introduction d'un catalyseur.

Exercice 2:

1.
$$a = \frac{v_1}{t_1} \Rightarrow v_1 = at_1 = 2 \times 8 = 16 \text{ ms}^{-1}$$

2.
$$AB = \frac{v_1^2}{2a} = 64m$$

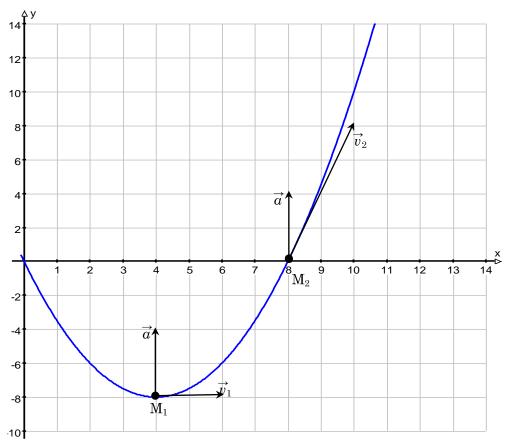
3.
$$x_1 = \frac{1}{2}at^2 = t^2$$

4.
$$x'_1 = v_1(t-t_0) + x_B = 16(t-8) + 64 = 16t - 64$$

5.
$$x_c = 12t$$

-
$$x_c = x_1 \Rightarrow 12t = t^2 \Rightarrow t = 0$$
 ou $t = 12s$ (pas de solution dans avant 8s)

-
$$x_c = x'_1 \Rightarrow 12t = 16t - 64 \Rightarrow t = 16s$$
 (solution)


Exercice 3:

1. Expression de \overrightarrow{OM} et \overrightarrow{a}

$$\overrightarrow{v} \begin{cases} v_x = 2 \\ v_y = 4t + 8 \end{cases} \Rightarrow \overrightarrow{OM} \begin{cases} x = 2t \\ y = 2t^2 - 8t \end{cases}; \overrightarrow{a} \begin{cases} a_x = 0 \\ a_y = 4 \end{cases}$$

$$\overrightarrow{OM} = 2t \overrightarrow{i} + (2t^2 - 8t) \overrightarrow{j} ; \overrightarrow{a} = 4 \overrightarrow{j}$$

2. Equation cartésienne: $y = \frac{x^2}{2} - 4x$

3.

- 3.1. \overrightarrow{v} colinéaire à \overrightarrow{i} ssi $v_y = 4t 8 = 0 \Rightarrow t_1 = 2s$
- 3.2. $\vec{v}_1 = 2 \vec{i}$; $\overrightarrow{OM}_1 = 4 \vec{i} 8 \vec{j}$ avec $M_1(4; -8)$ et $\vec{a} = 4 \vec{j}$
- 3.3. Représentation (voir schéma ci-dessus)

4.

4.1.
$$\tan \alpha = \frac{v_y}{v_x} = 4 \text{ donc } \frac{4t - 8}{2} = 4 \Rightarrow t_2 = 4s$$

4.2.
$$\overrightarrow{v}_2 = 2\overrightarrow{i} + 8\overrightarrow{j}$$
; $\overrightarrow{OM}_2 = 8\overrightarrow{i}$ avec $M_2(8;0)$ et $\overrightarrow{a} = 4\overrightarrow{j}$ (voir schéma)

4.3. On a
$$v = \sqrt{4 + (4t - 8)^2}$$
 $\Rightarrow a_t = \frac{dv}{dt} \Rightarrow a_t = \frac{4(4t - 8)}{\sqrt{4 + (4t - 8)^2}}$; à $t = 4s$ on a $a_{t=4s} = 3.9 \text{ m s}^{-2}$

$$a_n = \sqrt{a^2 - a_{t=4s}^2} = \sqrt{4^2 - 3.9^2} = 0.97 \text{ ms}^{-2}$$

4.4.
$$R = \frac{v^2}{a_n} = \frac{8,25^2}{0,97} = 70,1 \, m$$