DEVOIR N³ DE SCIENCES PHYSIQUES - DUREE: 4 HEURES

Exercice 1

Toutes les solutions sont mesurées à $25^{\circ} \mathrm{C}$.

1. Quelle masse d'hydroxyde de sodium faut-il dissoudre dans de l'eau pure pour obtenir $500,0 \mathrm{~mL}$ de solution S_{1} de concentration $\mathrm{C}_{1}=1,00.10^{-2} \mathrm{~mol} / \mathrm{L}$? Quel est le pH de S_{1} ?
2. A $10,0 \mathrm{~mL}$ de solution S_{1}, on ajoute un volume V_{2} d'une solution S_{2} d'acide chlorhydrique de concentration $\mathrm{C}_{2}=5,00.10^{-3} \mathrm{~mol} / \mathrm{L}$ pour obtenir un mélange de $\mathrm{pH}=7,0$.

2.1. Déterminer V_{2}.

2.2. Déterminer la concentration de tous les ions présents dans la solution finale.
3. A $10,0 \mathrm{~mL}$ de solution S_{1}, on ajoute un volume $\mathrm{V}_{3}=10,0 \mathrm{~mL}$ d'une solution S_{3} de chlorure de sodium de concentration $\mathrm{C}_{3}=1,0.10^{-2} \mathrm{~mol} / \mathrm{L}$. Soit S_{4} la solution obtenue.
3.1. Quel est le pH de S_{3} ?
3.2. Déterminer le pH de S_{4}.
4. A $10,0 \mathrm{~mL}$ de la solution S_{1}, on ajoute un volume $\mathrm{V}_{4}=25,0 \mathrm{~mL}$ de solution S_{2}. Soit S_{5} la solution obtenue.
4.1. Ecrire l'équation-bilan de la réaction qui se produit.
4.2. Déterminer le réactif qui est en excès ; en déduire le pH de S_{5}.
5. Reprendre les questions 4.1.) et 4.2.) avec la solution S_{6} obtenue par ajout, à $10,0 \mathrm{~mL}$ de solution S_{1}, d'un volume $\mathrm{V}_{6}=10,0 \mathrm{~mL}$ de solution S_{2}.

Exercice 2

1. Le diagramme de la figure ci-contre représente quelques niveaux d'énergie de l'atome de mercure.
1.1. A partir de ce diagramme, préciser en le justifiant, l'état fondamental de l'atome de mercure.
1.2. L'atome de mercure, pris dans son état fondamental, absorbe un photon d'énergie W égale à $5,45 \mathrm{eV}$. Déterminer la valeur de l'énergie E_{3} qui caractérise le niveau $(\mathrm{n}=3)$ dans lequel se trouve l'atome après absorption d'un photon.
2. L'atome de mercure se trouve dans l'état excité d'énergie E_{4}.
2.1. Calculer la longueur d'onde λ de la radiation émise lors de la transition de l'état d'énergie E_{4} vers l'état fondamental d'énergie E_{1}.
2.2. Préciser en le justifiant, si cette radiation émise appartient ou non au domaine du visible, sachant que toute radiation visible est caractérisée par une longueur d'onde λ telle que: $400 \mathrm{~nm} \leqslant \lambda \leqslant 750 \mathrm{~nm}$.
3. La raie de longueur d'onde $\lambda=438,6 \mathrm{~nm}$ est émise lors de la transition de l'atome de mercure d'un état excité d'énergie E_{n} vers un état d'énergie inférieure E_{p}. Déterminer les énergies E_{n} et E_{p} correspondant à cette transition.
4. Un atome de mercure, pris dans son état fondamental, reçoit successivement deux photons, d'énergies respectives $10,00 \mathrm{eV}$ et $10,44 \mathrm{eV}$. Préciser, en le justifiant, lequel des deux photons permettra l'ionisation
 de l'atome de mercure.

$$
\text { On donne: } h=6,62 \cdot 10^{-34} \mathrm{Js} ; C=3.10^{8} \mathrm{~m} \mathrm{~s}^{-1} ; 1 \mathrm{~nm}=10^{-9} \mathrm{~m} ; 1 \mathrm{eV}=1,6.10^{-19} \mathrm{~J}
$$

Exercice 3

1. L'argent $108\left({ }_{47}^{108} \mathrm{Ag}\right)$ se désintègre spontanément en un noyau de cadmium ${ }_{48}^{108} \mathrm{Cd}$. La transformation nucléaire s'accompagne de l'émission d'une particule X.
1.1. Ecrire l'équation de la réaction nucléaire et préciser les lois utilisées ainsi que la nature de X .
1.2. La réaction nucléaire considérée est-elle provoquée ou spontanée?
1.3. Expliquer l'origine de la particule X.
2. Dans la but de déterminer la période radioactive T de l'argent 108, on étudie expérimentalement l'évolution de l'activité A d'un échantillon d'argent 108 au cours du temps. Les résultats obtenus ont permis de tracer le graphe $\log A=f(t)$. Sachant que l'activité A s'écrit sous la forme $A=A_{0} e^{-\lambda t}$, où A_{0} est l'activité de l'échantillon à l'instant $t=0$ et λ est la constante radioactive de l'argent 108.
2.1. En déterminant l'expression théorique de LogA en fonction du temps, expliquer l'allure de la courbe de la figure ci-contre.
2.2. Définir la période d'une substance radioactive et déterminer son expression en fonction de λ.
2.3. Déterminer à partir du graphe $\log A=f(t)$, la constante radioactive λ et en déduire la valeur de la période radioactive T de l'argent 108.
3. Déterminer l'activité initiale A_{0} de l'argent 108 et en déduire le nombre N_{0} de noyaux initialement présent dans l'échantillon d'argent 108.
4. Déterminer le nombre de noyaux désintégrés à la date $\mathrm{t}=10 \mathrm{~min}$.

Exercice 4

On utilise un dispositif permettant d'observer dans l'air des interférences lumineuses. S_{1} et S_{2} sont deux fentes constituant des sources cohérentes et synchrones. L'axe yy' est confondu avec la médiatrice de $\mathrm{S}_{1} \mathrm{~S}_{2}$. L'écran d'observation E est perpendiculaire à l'axe yy'. On éclaire d'abord les fentes deux fentes avec une lumière monochromatique jaune de longueur d'onde $\lambda_{1}=0,6 \mu \mathrm{~m}$. On constate que la distance qui sépare les milieux de la frange centrale d'ordre $\mathrm{k}_{1}=10$ est de $\mathrm{x}_{1}=6 \mathrm{~mm}$.

On éclaire ensuite les deux fentes avec une lumière rouge monochromatique de longueur d'onde λ_{2}. La distance qui sépare le milieu de la frange centrale du milieu de la frange brillante d'ordre $\mathrm{k}_{2}=12$ est de $\mathrm{x}_{2}=8,64 \mathrm{~mm}$.

1. Montrer que la longueur d'onde λ_{2} s'exprime par: $\lambda_{2}=\frac{\mathrm{k}_{1} \mathrm{x}_{2}}{\mathrm{k}_{2} \mathrm{x}_{1}} \lambda_{1}$. Calculer λ_{2}.
2. Calculer les fréquences v_{1} et v_{2} correspondant à ces deux radiations.
3. On éclaire ces deux fentes simultanément avec ces deux radiations ; ce qui donne une lumière paraissant orangée à l'œil au point H , intersection de yy' avec l'écran.
3.1. Expliquer qualitativement cet aspect de l'écran c'est à dire l'apparition de la teinte orangée.
3.2. La largeur totale du champ d'interférence sur l'écran E étant de 18 mm ; combien de fois retrouve-t-on l'aspect observé en H .
4. On dispose d'une cellule photoémissive avec cathode au césium dont le seuil photoélectrique est $\lambda_{0}=0,66$ $\mu \mathrm{m}$. On éclaire la cathode successivement avec les trois radiations lumineuses déjà étudiées :
(a) avec la lumière jaune de longueur d'onde λ_{1}.
(b) avec la lumière rouge de longueur d'onde λ_{2}.
(c) avec la lumière orangée formée par la mélange des deux précédentes.

Préciser pour chacune des expériences, (a), (b) et (c) s'il y a eu émission d'électrons. Si oui avec quelle vitesse maximale ces électrons sortent-ils de la cathode?
On donne : célérité de la lumière dans le vide $\mathrm{c}=3,00.10^{8} \mathrm{~m} / \mathrm{s}$; constante de Planck $\mathrm{h}=6,62 \cdot 10^{-34} \mathrm{~J} . \mathrm{s}$

Exercice 5

On dispose d'un pendule élastique horizontal comportant un ressort (R) et un solide (S) de masse m. L'une des extrémités de (R) est fixe tandis que l'autre extrémité est attachée à (S), comme le montre la figure ci-dessous. Le solide (S) est susceptible de glisser sur un plan horizontal, dans le repère galiléen ($\mathrm{O}, \vec{\imath}$) confondu avec l'axe du ressort et dont l'origine O est la position de repos du centre d'inertie G de (S). Le ressort (R) a une raideur k et une masse négligeable devant (S).
On écarte le solide (S) de sa position de repos O en le déplaçant, suivant l'axe x 'x, de manière à ce que le ressort (R) se comprime d'une longueur a. A l'instant de date $t=0 \mathrm{~s}$, on l'abandonne à lui-même, sans vitesse initiale. Avec un dispositif approprié, on enregistre dans le repère ($O, \vec{\imath}$) le diagramme de mouvement du centre d'inertie G de (S). Ainsi, on obtient la figure ci-contre.

1. De telles oscillations de (S) sont dites libres. Justifier cette qualification.
2. Calculer la phase initiale φ des oscillations de (S) et en déduire que c'est la courbe 2 qui représente le diagramme du mouvement de (S).
3. Déterminer graphiquement la valeur de l'amplitude a des oscillations et celle de la période T_{0} des oscillations.
4. Calculer la valeur de la raideur k du ressort sachant que $m=289 \mathrm{~g}$

