Exercice 1: Léaction entre un acide fort et une base forte (8 points)

Les parties I et II sont indépendantes.

Partie I: mélange

On mélange V_1 = 30 cm³ d'une solution d'acide chlorhydrique de molarité C_1 = 10^{-2} mol·L¹¹ et un volume V_2 de soude de concentration molaire initiale C_2 =1,5. 10^{-2} mol·L¹¹. On ajoute quelques gouttes de bleu de bromothymol.

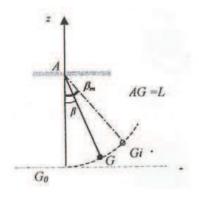
- 1. Calculer la valeur de V₂ quand le pH est égal à 2,5.
- 2. Calculer la concentration des espèces chimiques présentes en solution à pH=2,5.
- 3. Quel volume de soude V' doit-on verser pour que la solution obtenue soit de couleur verte?

Partie II: dosage

Dans un bécher contenant 100 mL d'acide chlorhydrique, on verse, à l'aide d'une burette, une solution d'éthanolate de sodium de concentration 0,1 mol·L⁻¹. Le tableau ci-dessous indique pour différentes valeurs du volume v en mL de la solution de base versée, les valeurs correspondantes du pH.

V(mL)	0	1,5	3	5	7	7,5	8	8,5	8,7	9,3	9,5	10	10,5	11	13	15	17
рН		2,2	2,3	2,4	2,7	2,8	3	3,4	3,7	10	10,4	10,8	11	11,2	11,4	11,6	11,7

- 1. Construire le graphe pH = f(v) en précisant l'échelle.
- 2. Écrire l'équation bilan de la réaction entre l'ion éthanolate et l'acide chlorhydrique.
- 3. Quelle est la concentration en mol·L⁻¹ de la solution d'acide chlorhydrique?
- 4. Compléter le tableau de valeur à v = 0 mL.
- 5. Parmi les trois indicateurs colorés suivants, quel sont ceux qui pourraient servir au dosage de l'acide? Comment serait repéré le volume équivalent?


Indicateurs	Valeur du pH							
Hélianthine	Rouge	3,1	Orange	4,4	Jaune			
BBT	Jaune	6,0	Vert	7,4	Bleu			
Jaune d'alizarine	jaune	10,1	violet	12,1	lilas			

Exercice 2: (Iscillations mécaniques libres (8 points)

Les parties A et B sont indépendantes. Dans tout ce qui suit, les frottements sont négligés.

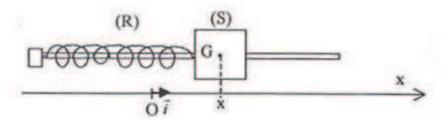
Partie I : pendule simple.

On étudie un pendule simple constitué d'un solide (S) de masse ponctuelle m, attachée à l'une des extrémités d'un fil

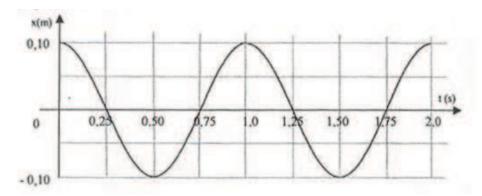
Année: 2007/2008

inextensible, de masse négligeable et de longueur L.

L'autre extrémité du fil est attachée en un point fixe A. Écarté de sa position d'équilibre G_0 , le pendule oscille sans frottements avec une amplitude β_m . G_i est la position initiale à partir de laquelle le pendule est abandonné sans vitesse. Une position quelconque G est repérée par β , élongation angulaire mesurée à partir de la position d'équilibre.


- 1. Donner l'expression de l'énergie cinétique en G.
- 2. On prendra l'origine des énergies potentielles en G_0 , origine de l'axe des z. Exprimer, dans ce cas, l'énergie potentielle en G en fonction de m, g, L et β .
- 3. Donner l'expression de l'énergie mécanique.
- 4. Exprimer la vitesse au passage par la position d'équilibre en fonction de g, L et β_m . Calculer sa valeur.

Données : g = 10 m·s
$$^{-2}$$
 ; L = 1,0 m ; cos β_{m} = 0,95.


- 5. Le système étant conservatif, établir l'équation différentielle du mouvement du solide (S) dans le cas des "petites oscillations".
- 6. Déterminer l'équation horaire de l'élongation $\beta(t)$.

Partie II : oscillateur élastique.

Le solide (S) de masse m, de centre d'inertie G, peut maintenant glisser sans frottement sur une tige horizontale. Il est accroché à un ressort (R) à spires non jointives, de raideur $k = 4,0 \text{ N} \cdot \text{m}^{-1}$. Lorsque le solide (S) est à l'équilibre, son centre d'inertie G se situe à la verticale du point O, origine de l'axe des abscisses. Le solide est écarté de 10 cm de sa position d'équilibre et abandonné sans vitesse initiale à la date t = 0 s.

On procède à l'enregistrement des positions successives de G au cours du temps par un dispositif approprié. On obtient la courbe ci-dessous :

1. Reproduire sur la copie le schéma du dispositif expérimental ci-dessus. Représenter et nommer les forces en G, sans souci d'échelle, s'exerçant sur le solide (S).

Année: 2007/2008

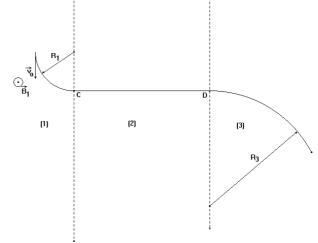
- **2.** En appliquant la deuxième loi de Newton au solide (S), établir l'équation différentielle régissant le mouvement de son centre d'inertie G.
- **3.** Une solution de l'équation différentielle peut s'écrire sous la forme :

$$x(t) = x_m \cos\left(\frac{2\pi t}{T_0} + \varphi\right)$$
. (x_m est l'amplitude et φ la phase initiale)

- a) Retrouver l'expression de la période T₀ en fonction de m et de k.
- b) Déterminer x_m , T_0 et φ .
- c) Calculer la valeur de la masse m du solide (S).

Exercice 3: Trajectoire d'une particule dans des champs magnétiques (4 points)

Données:


Masse de l'électron =	9,10.10 ⁻³¹ kg
Masse du proton =	,
Masse des ions Cl ⁻ =	5,84.10 ⁻²⁶ kg
Charge élémentaire	e=1,60.10 ⁻¹⁹ C

Une particule de charge q, de masse m, de vitesse \overrightarrow{v}_0 de module $v_0 = 1,92.10^5 \, \text{m} \cdot \text{s}^{-1}$ située dans le plan de figure traverse une région de l'espace séparée en trois parties (cf. schéma). Toutes les forces à l'exception de celles dues aux champs magnétiques sont négligeables.

Dans la partie (1) règne un champ magnétique uniforme $\stackrel{\rightarrow}{B_1}$ perpendiculaire au plan de la figure et orienté vers l'avant, d'intensité B_1 =0,5 T. La trajectoire est un arc de cercle de rayon R_1 =14 cm.

Dans la partie (2), le champ magnétique est nul. La trajectoire est un segment de droite CD.

Dans la partie (3) règne un champ magnétique uniforme $\stackrel{\longrightarrow}{B}_3$. La trajectoire est un autre arc de cercle de rayon $R_3=2R_1$.

- 1. Établir l'expression de R_1 en fonction de q, m, B_1 et v_0 .
- 2. a) Quel est le signe de la particule? Justifier votre réponse.
 - b) Calculer le rapport $\frac{|q|}{m}$ et identifier cette particule.
- 3. Donner, en justifiant la réponse, la nature du mouvement dans la région (2), en déduire la vitesse de la particule en D.
- 4. Indiquer la direction, le sens et la valeur du champ magnétique \overrightarrow{B}_3 .

Bonne chance