

DECEMBRE 2024 NIVEAU 2S

SERIE D'EXERCICES STANDARDISEE SUR LES LIAISONS CHIMIQUES

Exercice 1:

- **1.** Pour chacune des molécules suivantes : H_2 ; H_3 : C_2H_4 , C_2H_6S , $C_4H_8O_2$ et SiH_4 indiquer l'atomicité et proposer une représentation de Lewis.
- 2. La formule du dichlorométhane peut être obtenue à partir de celle du méthane (CH₄) par remplacement de deux atomes d'hydrogène par deux atomes de chlore.

Ecrire la formule du dichlorométhane. Donner la représentation de Lewis de cette molécule

Exercice 2:

- 1. Les molécules des composés ci-dessous ne comportent que de liaisons simples. Ecrire les formules développées de ces composés. N_2H_4 ; CH_4O ; C_4H_{10} ; C_2H_6O ; C_2H_4 $C\ell$ $_2O$
- 2. Les molécules des composés ci-dessous peuvent comporter des liaisons multiples. Ecrire les formules développées de ces composés. O₂; C₂H₄; C₂H₂; HCN; C₄H₈; C₃H₄, C₄H₉ON, CO(NH₂)₂, C₂H₅P

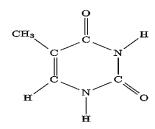
Exercice 3:

Quel type d'ion l'élément oxygène, de numéro atomique Z = 8, donne-t-il ? En déduire les charges des cations dans les composés ioniques suivants : K_2O ; FeO ; Fe₂O₃ ; MgO ; $A\ell$ ₂O₃.

Exercice 4:

- 1. On considère un composé chimique de formule C₃H₃N. Déterminer la structure électronique de chacun des atomes constituants ce composé. Combien de liaisons covalentes ces atomes doivent-ils établir pour obtenir une structure en duet ou en octet ?
- **2**. Donner les schémas de Lewis, les formules développées et semi-développées possibles correspondants à cette formule brute

Exercice 5:


La structure de la molécule de thymine, qui joue un rôle fondamental dans la chaine de l'ADN, est représentée ci-contre :

- 1. Déterminer la formule brule de cette molécule.
- 2. Donner les schémas de Lewis des atomes constitutifs de la molécule.
- **3.** Indiquer la nature des liaisons rencontrées dans cette molécule en précisant leur nombre.
- **4.** Cette représentation n'est pas une représentation de Lewis. Justifier cette affirmation puis donner la représentation de Lewis de la molécule de thymine.

Exercice 6:

Le propanal est un composé organique moléculaire dont la formule brute peut s'écrire sous la forme C₃H₆O.

- Proposer deux formules développées qui correspondent à la formule brute C₃H₆O.
- **2.** La molécule de propanal possède un atome de carbone lié à un atome d'hydrogène et à un atome d'oxygène par une liaison covalente double, donner sa formule développée.

- **3.** La propanone est un composé organique moléculaire qui est un isomère du propanal. La formule brute de la propanone est C₃H₆O. La molécule de propanone possède deux carbones liés à trois atomes d'hydrogène. Donner la formule développée de la propanone.
- **4.** En comparant les formules de la propanone et celle du propanal, dire ce qu'on appelle molécule isomère.

Exercice 7:

- 1. Rappeler la formule des ions ammonium, potassium, calcium, nitrate, sulfate, phosphate
- **2**. Parmi les formules suivantes, indiquer celles qui sont correctes et rectifier les autres : K_2NO_3 , Ca_2SO_4 , K_3PO_4 , $NH_4(PO_4)_3$, $Ca(NO_3)_2$ et K_2SO_4
- **3.** L'hydrogénocarbonate de potassium est un composé ionique de formule statistique KHCO₃. En déduire la formule de l'ion hydrogénocarbonate.
- **4.** Le baryum (Ba) se trouve dans la deuxième colonne du tableau de classification périodique. En déduire quel ion peut former cet atome ?
- 5. Quelle est la formule statistique de l'hydrogénocarbonate de baryum.

Exercice 8:

- 1. Le constituant majoritaire de l'émail des dents est l'hydroxyapatite. Sa formule est de type $Ca_x(PO_4)_y(OH)$. Déterminer x et y.
- 2. Compléter le tableau ci-dessous

Anion	cation	Formule ionique	Formule statistique	Nom
CO ₃ ²⁻	Cu ²⁺			
OH^-	Fe ³⁺			
SO ₄ ²⁻	Na ⁺			
PO ₄ ³⁻	Mg ²⁺			
			NH ₄ NO ₃	
			Cu(OH) ₂	
			KMnO ₄	
				Sulfate d'aluminium
		$(2 A \ell^{3+} + 3C_2O_4^{2-})$		
				Dichromate de sodium

Noms de quelques ions

Cations	Anions	
H⁺: ion proton ; H ₃ O⁺: ion hydronium	OH ⁻ : ion hydroxyde	
NH ₄ ⁺ : ion ammonium; Li ⁺ : ion lithium	F^- : ion fluorure; $C\ell^-$: ion chlorure	
Na ⁺ : ion sodium;	Br ⁻ : ion bromure; I ⁻ : ion iodure	
K ⁺ : ion potassium	NO_3^- : ion nitrate; $C_2O_4^{2^-}$: oxalate	
Cu ⁺ : ion cuivre (I);	HS ⁻ : ion hydrogénosulfure;	
Mg ²⁺ : ion magnésium;	HSO₄⁻: ion hydrogénosulfate	
Ca ²⁺ : ion calcium	HCO₃⁻: ion hydrogénocarbonate	
Be ²⁺ : ion beryllium;;	CH₃COO⁻: ion éthanoate	

Wahab

Mn²⁺:ion manganèse (II)

Fe²⁺:ion fer (II)

Cu²⁺: ion cuivre (II)

Al³⁺: ion aluminium;

Cr³⁺: ion chrome (III);

Fe³⁺: ion fer (III);

MnO₄-: ion permanganate

 O^{2-} : ion oxyde; S^{2-} : ion sulfure

 SO_4^{2-} : ion sulfate, N^{3-} : ion nitrure

CO₃²⁻: ion carbonate;

Cr₂O₇²⁻: ion dichromate

PO₄³⁻: ion phosphate

FIN DE SERIE

