INSPECTION D'ACADEMIE DE TAMBACOUNDA CELLULE ACADEMIQUE DE SCIENCES PHYSIQUES

OCTOBRE 2024 NIVEAU : TS2

EXERCICE I

Soit $\overrightarrow{OM} = x \vec{i}$ le vecteur position d'un point mobile M animé d'un mouvement rectiligne d'équation horaire : $X(t) = -5t^2 + 30t + 10$ $t \ge 0$

SERIE ACADEMIQUE CINEMATIQUE

- 1. Déterminer les vecteurs vitesse \vec{V} et accélération \vec{a} du point mobile. Quelle est la nature du mouvement ? Préciser les valeurs de l'accélération, de la vitesse et de l'abscisse de M à l'instant initial.
- 2. Etudier la variation de vitesse V en fonction du temps t. A quelle date le mouvement de M change —il de sens ? Entre quels instants ce mouvement est-il accéléré ?décéléré ?
- 3. Représenter graphiquement la fonction x(t). Déterminer sur ce graphique l'instant où le vecteur \vec{V} s'annule et change de sens. Quelle est alors l'abscisse de point M ?

EXERCICE II

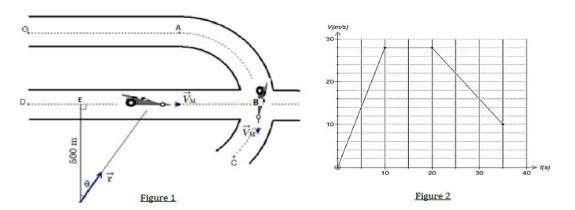
Un mobile ponctuel se déplace dans un repère $R\left(o,\vec{t}\,,\vec{j}\,\right)$; son mouvement débute à l'instant t=o; son vecteur vitesse est $\vec{V}=\vec{i}+2t\,\vec{j}$, (en m.s⁻¹). A l'instant t=4s il passe par le point A de coordonnées (2,0) 1. Etablir les lois horaires du mouvement;

- 1. Etablii les lois floralles du flouvernent,
- 2.1. Déterminer l'équation cartésienne de la trajectoire.
- 2.2. Construire la courbe de la trajectoire dans le repère $R(o, \vec{i}, \vec{j})$ entre les instant $\mathbf{t_0} = \mathbf{0}$ s et $\mathbf{t} = \mathbf{5}$ s . Echelle 1 cm correspond à 1 m.
- 2.3. Déterminer la durée Δt du mouvement entre le sommet de la trajectoire et le point A .
- 3.1. Déterminer le vecteur accélération \vec{a} .
- 3.2. Déterminer les caractéristiques du vecteur vitesse $\vec{V}_{\!\scriptscriptstyle A}$; lorsque le mobile passe par le point A.
- 3.3. Représenter sans échelle en A le vecteur vitesse $\vec{V}_{_{\!A}}$ et le vecteur accélération \vec{a} .
- 3.4. En déduire les composantes tangentielle et normale du vecteur accélération en A.

EXERCICE III:

Les équations paramétriques (en unités S.I.) d'un mobile M se déplaçant dans un plan muni d'un repère

orthonormé
$$(o, \vec{i}, \vec{j})$$
 sont :
$$\begin{cases} x = 3t \\ y = t^2 - 1 \end{cases}$$


- 1. Calculer la vitesse du mobile à l'instants t = 2 s.
- 2. Calculer les composantes tangentielle a_T et normale a_N de l'accélération \vec{a} du mobile dans la base de Frenet (M, \vec{N}, \vec{T}) à l'instants t = 2 s. En déduire la valeur du rayon de courbure 2 de la trajectoire à t = 2 s.

EXERCICE IV

Une voiture, assimilée à un point matériel M, se déplace sur une trajectoire **OABC**, constituée d'une partie rectiligne **OA** et une circulaire **ABC** de rayon R. O est l'origine de l'axe (ox) orienté positivement de O vers A (voir figure 1).

A t = 0s la voiture est au point O, elle arrive au point A à t = 20s. Elle atteint le point B à t = 30 s avec une accélération de $2 m/s^2$.

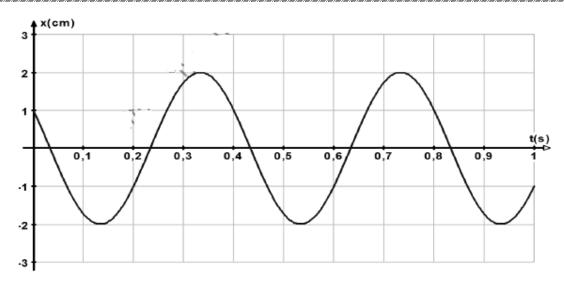
L'évolution de la vitesse de la voiture M en fonction du temps a été représentée à la figure2.

- 1. Ecrire les équations horaires de la vitesse entre t=0 et t= 35 s.
- 2. Ecrire les équations horaires de l'abscisse de M dans la partie OA en précisant la nature du mouvement.
- 3. Quelle est la longueur de l'arc \widehat{AB} .
- 4. Tracer le graphe de l'accélération tangentielle entre 0 et 35s
- 5. Déterminer le rayon de courbure R_B de la trajectoire du mobile au point B.
- 6. Calculer la valeur de la vitesse et celle de l'accélération 10 s après le passage au point A.

EXERCICE V

Dans un référentiel R, muni du repère d'espace cartésien $(0, \vec{i}, \vec{j}, \vec{k})$ la loi horaire d'un point M est donnée par: $\overrightarrow{OM} = 2t \ \vec{i} + \sqrt{4(1-t^2)} \ \vec{j}$, avec t exprimé en seconde et les distances en mètre.

- 1. On suppose : t > 0 .Pour quelles valeurs de t le mouvement de M est-il défini ?
- 2. Quelle est la nature de la trajectoire ?construire cette trajectoire.
- 3.1. Exprimer les coordonnées du vecteur vitesse \vec{V} du point M dans la base (\vec{i}, \vec{j}) . Le mouvement de M est-il uniforme ? justifier la réponse.
- 3.2. Représenter, sur le graphique du 2), le vecteur vitesse du point M,à l'instant t=0,5s. 1cm → 0,50m.s⁻¹.
- 4.1. Exprimer la vitesse angulaire ω du point M en fonction du temps.
- 4.2. Quelle est sa valeur numérique pour t=0,5s?
- 5.1. Exprimer les coordonnées, dans la base de Frenet, du vecteur accélération \vec{a} de M.
- 5.2. Représenter, sur le graphe du 2) le vecteur \vec{a} à l'instant t = 0,5s. 1cm \leftrightarrow 0,50m.s⁻¹.
- 6. A la date : t=0,5s, le mouvement de M est-il accéléré ou décéléré. Justifier la réponse.
- 7. Quelle est la valeur numérique de l'abscisse curviligne de M,à la date t=0,5s, si l'origine des abscisses curvilignes est la position M_0 du point M à la date t=0,0s?
- 8. Soit φ l'angle $(\overrightarrow{OX}, \overrightarrow{OM})$, nul à l'instant initial t=0.
- 8.1. Exprimer φ en fonction du temps t.
- 8.2. Calculer la vitesse angulaire w(t) de M.


EXERCICE VI

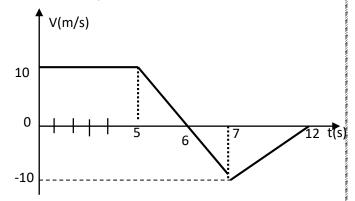
Un mobile est animé d'un mouvement rectiligne sinusoïdal dans le référentiel terrestre selon l'équation : $x = x_m \cos(\omega t + \phi)$.

Dans un repère (O,\vec{l}) lié à ce référentiel, porté par la trajectoire dont l'origine est la position d'équilibre du mobile,

L'élongation x du mobile, évolue dans le temps suivant le chronogramme de la figure ci-dessous.

- 1. Déterminer graphiquement les valeurs de l'amplitude \mathbf{x}_{m} , de la pulsation $\boldsymbol{\omega}$ et de la phase initiale φ du mouvement du mobile.
- 2. Déterminer la date à laquelle le mobile passe pour la 2ème fois par la position d'abscisse $x_1 = -1$ cm.
- 3.1. Etablir l'expression en fonction du temps, de la vitesse v du mobile puis montrer que la vitesse et en quadrature avance sur l'élongation x.
- 3.2. Etablir la relation $V^2 = \omega^2$. ($X_m^2 X^2$).
- 3.3. Déterminer la position du mobile pour laquelle sa vitesse prend la valeur maximale Vm.
- 3.4. Calculer la valeur de la vitesse du mobile quand son élongation vaut **0,5 cm**.

EXERCICE VII

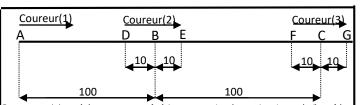

Un mobile est animé d'un mouvement rectiligne sinusoïdal. L'axe xx' est le support de la trajectoire, l'origine O est le centre du mouvement. La période du mouvement est T=2,0s. A l'instant choisi pour origine des dates, l'abscisse du mobile est xo = 1,2cm, sa vitesse est nulle.

- 1. Déterminer l'équation horaire du mouvement.
- 2. Quelle est la vitesse maximale du mobile?
- 3. Quelle est l'accélération maximale du mobile ?
- 4. Calculer l'abscisse, la vitesse et l'accélération du mobile à la date t= 1,5s

EXERCICE VIII

La représentation graphique de la vitesse V = f(t) d'un mobile est donnée à la figure ci-contre.

- 1.1. Calculer les accélérations du mobile au cours du mouvement.
- 1.2. Tracer la représentation graphique a = g(t) de l'accélération a en fonction du temps avec t ϵ [0; 12] en seconde.
- 2. Calculer l'espace parcouru par le mobile.


EXERCICE IX

La figure ci-contre donne les règles essentielles de la course de relais 4x100m.

1. Le coureur(1) démarre à l' instant t₀ du point A. Son mouvement est rectiligne uniformément accéléré.

Il atteint la vitesse v_1 = 9.8m.s⁻¹ en : Δt_1 =0,8s. Il se trouve alors au point A_1 .

- 1.1. Déterminer la valeur de l'accélération $\ a_1$ de cette première phase de son mouvement.
- 1.2. Etablir dans des repères que l'on précisera les lois horaires littérales et numériques : $x_1(t)$ et $v_1(t)$ du mouvement du coureur(1) dans cette phase.

Le coureur(1) ne doit transmettre le bâton au « témoin »qu'après avoir franchi le point B à 100m mètre de A. Le coureur(2) peut démarrer 10 mètres avant B et dispose de 10m pour recevoir le témoin. On admettra que les deux coureurs doivent être cote à cote quand s'effectue le relais.

2. A t_1 =0,8s, commence la deuxième phase du mouvement du coureur (1). Son mouvement devient rectiligne et uniforme à la vitesse V_1 .En prenant comme origines des repères les éléments suivants :

le: 775136349

Repère d'espace : point A_1 ; repère de date : t = 0 : « le coureur(1) est en A_1 », établir les lois horaires littérales et numériques : $x_2(t)$ et $V_2(t)$ du mouvement du coureur(1) dans cette deuxième phase.

3. Quel temps réalise –t-il aux 100m?

EXERCICE X

Une automobile franchit un feu rouge, à un instant pris comme origine du temps, à une vitesse constante V_1 =30 m.s⁻¹ (108 Km.h⁻¹). Deux secondes plus tard une voiture de police, placée au niveau du feu rouge, démarre à une accélération a = 4 m.s⁻² à la poursuite de l'automobile. Les mouvements des deux mobiles sont rapportés à un repère (o ;i) horizontal, l'origine O coïncide avec la position du feu rouge. Le parcours des deux mobiles est supposé rectiligne.

- 1. Quelle est la nature de mouvement de l'automobile ? Donner sa loi horaire de mouvement.
- 2. Quelle est la nature de mouvement de la voiture de la police ? Donner sa loi horaire de mouvement.
- 3. Déterminer l'instant de rattrapage de l'automobile par les agents de police. Déduire la position du rattrapage ainsi que la vitesse de chaque voiture.
- 4. En réalité la vitesse maximale de la voiture des policiers ne peut pas dépasser la valeur 50 m.s⁻¹.
- 4.1. L'automobile peut-elle être rattrapée par les policiers.
- 4.2. Si non déterminer la distance minimale qui sépare les deux mobiles lors de la poursuite.

EXERCICE XI:

Un dispositif permet d'enregistrer à des intervalles de temps égaux, les positions d'un point matériel en mouvement rectiligne. Les résultats sont consignés dans le tableau suivant :

t (s)	0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1
x (cm)	5	15	29	47	69	95	124,5	154,5	184,5	214,5	244,5

- 1. Montrer que le mouvement admet une première phase uniformément accélérée et calculer son accélération. Etablir l'équation du mouvement dans cette phase.
- 2. Montrer que le mouvement devient uniforme vers la fin de l'enregistrement. Etablir l'équation horaire pour cette phase. On considérera qu'à l'instant initial $v = v_0 = 0$.

FIN DE SERIE