MINISTERE DE L'EDUCATION INSPECTION D'ACADEMIE DE SEDHIOU LYCEE DE GOUDOMP

DEVOIR N°3 SECONDE SEMESTRE DE SCIENCES PHYSIQUES / NIVEAU PREMIER S2 DUREE : 2H

EXERCICE 01: (3points)

- 1.1 Ecrire les demi- équations électroniques des couples suivants : Cr³⁺ / C_r; Pb²⁺ / Pb.(1point)
- 1.2 Compléter les demi-équations électroniques suivantes, puis préciser s'il s'agit d'une oxydation ou d'une réduction et enfin préciser également le réducteur et l'oxydant du couple qu'on écrira :

On mélange 100 cm³ d'une solution de nitrate d'argent de concentration $C_1 = 0.5$ mol. L^{-1} avec 150 cm³ d'une solution de sulfate de zinc de concentration $C_2 = 0.8$ mol. L^{-1} .

Expérience 1 : On verse dans le mélange de la poudre de cuivre, on recueille, après filtrage et séchage un solide de masse m = 4,32 g.

- 2.1 Ecrire la ou les réaction(s) d'oxydoréduction (s) possible(s). Préciser la nature du solide recueilli.(1point)
- 2.2 Reste-t-il des ions Ag⁺ dans le mélange ? Si oui calculer la quantité de matière de ces ions.(1point)
 - ✓ **Expérience 2 :** On ajoute dans le mélange finale de la grenaille de fer juste nécessaire, on recueille un solide après séchage et filtrage de masse m'.
 - ✓ <u>2.3</u> Ecrire la ou les réaction(s) d'oxydoréduction(s) correspondante(s). Préciser la nature du solide recueilli.(1point)
- 2.4 Calculer la masse de fer nécessaire pour faire réagir ces ions ainsi que la masse m'. (1point)
- 2.5 Calculer la concentration des ions présents dans la solution finale. (1point)

EXERCICE 03 (6points)

Un petit moteur électrique récupéré dans un vieux jouet d'enfant est monté en série avec un conducteur ohmique de résistance R = 4 Ω , une pile (f.é.m. E = 4,5 V, résistance interne r = 1,5 Ω), un ampèremètre de résistance négligeable et un interrupteur K.

- 3.1 Faire un schéma du montage. (1point)
- <u>3.2</u> Lorsqu'on ferme l'interrupteur, le moteur se met à tourner et l'ampèremètre indique un courant d'intensité I = 0,45 A.

En déduire une relation numérique entre la f.c.é.m. E' du moteur (en V) et sa résistance r' (en Ω). (1point)

3.3 On empêche le moteur de tourner et note la nouvelle valeur de l'intensité : l' = 0.82 A.

En déduire les valeurs numérique en S.I., de r' et de E'. (1point)

- 3.4 Déterminer pour 5 min de fonctionnement du moteur :
- -l'énergie E₁ fournie par la pile au reste du circuit, (0.75point)
- -l'énergie E₂ consommée dans le conducteur ohmique, (0.75point)
- -l'énergie utile E₃ produite par le moteur.(**0.75point**)
- Le rendement du circuit (0.75point)

EXERCICE 4 (6point)

Un électrolyseur de f.c.é.m. e = 2 V de résistance r = 10 Ω , est parcouru par un courant d'intensité 0,5 A.

- 4.1 Rappeler la loi d'ohme aux bornes d'un moteur ou de l'électrolyseur (0.5point)
- 4.2-Déterminer la tension aux bornes de ce récepteur (0.5point)
- 4.3 Quelle est la puissance électrique reçue par ce récepteur ? (1point)
- 4.4 En 2 h de fonctionnement, quelles sont les quantités :
- a) d'énergie électrique consommée ?(1point)
- b) d'énergie électrique utilisée pour provoquer les réactions chimiques ?(1point)
- c) de chaleur dégagée, (1point)
- d) Calculer le rendement de l'électrolyseur (1point)

BONNE CHANCE

MONSIEUR BA

