TECHNOLOGIES

Xcel Energy

AN INNOVAS TECHNOLOGIES® CASE STUDY

Xcel Energy

AN INNOVAS TECHNOLOGIES® CASE STUDY

Mike O'Malley, embracing Xcel Energy's commitment to sustainability excellence, found a great opportunity to significantly improve chiller efficiency in the district cooling plant he manages in Denver, Colorado.

TECHNOLOGIES"

CASE STUDY HIGHLIGHTS

Electricity Cost Savings:	\$62,000
Energy Conserved:	765,000 kW-hrs
GHG Emission Reduction:	582 tons
Equivalent Cars Removed:	103
Equivalent Trees Planted:	13,000
A DESCRIPTION OF A DESC	AND TAXABLE IN TRADUCTORY AND AND ADDRESS

INTRODUCTION

Improving the efficiency & productivity of central cooling plants.

Xcel Energy is one of the largest combined electric and natural gas utilities in the country and is a recognized industry leader in delivering renewable energy and reducing carbon and other emissions, efforts that put the company on a path to a more sustainable energy future.

district cooling in Colorado.

Energy is a highly Xcel innovative company as demonstrated by its announcement in 2018 that it aspires to deliver 100% carbonfree electricity to customers by 2050 - the first major US utility

Specifically, Xcel Energy provides power generation and district cooling services in 8 states in the western, southern and midwestern US.

Capable of generating over 17,000 MWs of power, Xcel Energy serves over 3.3 million electricity customers and over million natural 1.4 gas customers throughout its service area.

company to set such an ambitious goal.

Mike O'Malley, embracing Xcel Energy's commitment to sustainability excellence, found an opportunity to significantly improve chiller efficiency in the district cooling plant he manages in Denver, Colorado.

Mike's knowledge of the

Also, Xcel Energy provides

negative effects of condenser tube fouling and his search for a method to improve chiller efficiency led him to Innovas Technologies for the solution.

3

Xcel Energy Case Study – Innovas Technologies

THE CHALLENGE

As is so often the case, adopting innovative technology requires a high degree of evaluation and consideration regarding a new opportunity and was able to program in the new system.

Once funded, the evaluation was enacted. Mike understood the large potential savings and was the key leader in getting

approach's impact.

the program started.

THE SOLUTION

Installed on a 2,500-ton chiller in the downtown Denver Central Cooling Plant, the Helios Tube Cleaning System® was run throughout the normal cooling season in 2018.

In Xcel Energy's case, Mr. O'Malley knew there was room to improve chiller efficiency through tube fouling management. Subsequently, Mike served as the thought leader for integrating the Helios Tube Cleaning System® onto a single 2,500-ton chiller

> Chiller operation and performance data was recorded from the same chiller from 2017 before it was equipped with the Helios.

for a seasonal evaluation.

The plant has excellent data acquisition systems and in Mike's opinion, it would be easy to determine the impact of the Helios installation over the course of a complete cooling season.

In Xcel Energy's case, the biggest challenge was freeing capital funds to purchase a Helios TCS on a short notice. Mike O'Malley was successful in finding a funding As the data demonstrate, the Helios Tube Cleaning System® significantly improved chiller efficiency and increased chiller cooling output during the 2018

cooling season..

THE LESSON

The lesson continues to be

4

Xcel Energy Case Study – Innovas Technologies

reinforced at Helios Tube Cleaning System® installations throughout the country.

As previously stated, when the tubes on either side of a chiller remain clean and free of fouling, the chiller efficiency improves, and operating costs reduce. This is a generally wellknown fact, but it is sometimes hard to quantify.

No facility using water-cooled is immune chillers from fouling-related loss. None. Until now.

typical chiller While tubefouling losses will vary from

In Xcel Energy's case the savings are solidified by the data and equate to a solid payback. Most organizations ask the same question, "We believe the data at the other facilities, but how much will the system save us at our organization?" The answer can usually be found by analyzing the historical chiller operations data.

place to place based on the quality of the water source, local air quality, and water treatment the programs, growing data collection from chillers operating with Helios systems confidently suggests a savings of 6% to 10% in energy expense at over 70% of locations. The remaining 30%

Assuming the data is supplied by reliable/calibrated sensors, the approximate cost of fouling-related inefficiency can

"We used a third party to validate Innovas' savings numbers and they turned out better than claimed."

be identified.

Once the data is analyzed a consistent truth is exposed.

Xcel Energy Case Study – Innovas Technologies

Mike O'Malley | Cooling Plant Manager

is split equally with half experiencing efficiency losses above 10% and half below 6% savings opportunity.

How far below?

The lowest potential efficiency

RESULTS

Consistent with the results from other installations, the chiller showed immediate results after Helios installation, even with a sophisticated water treatment program already in place.

improvement in an evaluated chiller has been 3.5%.

Its payback was still under 3.5 years. With the introduction of the Helios Tube Cleaning System®, the tube foulingrelated waste can be completely eliminated. In 2017, prior to installation of the Helios system, the chiller ran consistently less efficiently than it did in 2018 after the installation of the Helios.

As demonstrated in **Figure 1**, with a Chilled Water Supply

Figure 1.

Chiller Efficiency Comparison from 2017 (preHelios) to 2018 (post-Helios) at 75 F Entering Condenser Water Temperature.

temperature (CHWST) of 38F and Entering Condenser Water Temperature (ECWT) of 75F, the chiller efficiency improved by an average of 9%.

When the ECWT increased to

the chiller producing as much as 200 tons of additional cooling as shown in Figure 3.

80 F, as shown in Figure 2, the average chiller efficiency improved by 12%. Additionally, the chiller cooling output capacity increased due to improved heat transfer, with

Figure 2.

Chiller Efficiency Comparison from 2017 (pre-Helios) to 2018 (post-Helios) at

80 F Entering Condenser Water

Temperature.

CHILLER 4 EFFICIENCY CURVES CHILLED H20 SUPPLY 38F, ENTERING COND. H20 80F

Figure 3.

Chiller Cooling Capacity Increased

As Much As 200 Tons After Helios Tube Cleaning System® Installation.

SUMMARY

In 2018 Xcel Energy achieved optimal efficiency in one of their downtown Denver Central Plant chillers because of the adoption of the Helios

The Helios result is consistent benefits including energy cost savings, and reduced greenhouse gas emissions.

Tube Cleaning System®.

The result is significant cost savings and improved sustainability.

Additionally, the workload associated with tube fouling in the Central Heating and Cooling Plant chillers was eliminated.

Summary Results

Average Chiller Efficiency Cain.

1.0/

Average Chiller Efficiency Gain:	4%0
Chiller Capacity Increase:	Up to 200 tons
Annual Energy Savings:	180,000 kW-hrs
Annual Cost Savings:	\$20,000
Project Lifetime CO2 Emissions Reductions:	2,200 Tons
Project Lifetime Savings (15 Yrs)	\$410,000

Figure 4.

Summarized Chiller Efficiency Impacts of Helios Tube Cleaning System® Installation.

Xcel Energy Case Study – Innovas Technologies

The Helios®

Cleaning Cycle

The Helios cycle is fully automatic and controlled by a programmable controller.

- Between cycles, the sponge balls are stored in the Collector and all valves are closed.
- 2. At programmed intervals, the Controller commands the injection valves to open and pump to start, and the balls are injected into the heat exchanger inlet line.
- 3. Normal cooling water flow transports the balls through the heat exchanger tubes and into the Ball Trap.
 4. The Controller then prompts the collection values to
- open and pump to start, and the balls are returned to the Collector, where they are held until the next injection/collection cycle starts.

View the Helios TCS Operation in action at innovastechnologies.com

Prevents scale.

Prevents scale, fouling,

Reduces maintenance costs.

Reduces maintenance and downtime costs by eliminating manual or chemical tube cleaning. biological life and corrosion in heat exchanger tubes.

Extends service life.

Extends the service life of heat transfer equipment.

The Helios Tube Cleaning System®

The Helios Tube

Cleaning System® from Innovas improves the energy efficiency of cooling systems.

TECHNOLOGIES"

For more information about Innovas Technologies' products and services please contact our Authorized Distributor:

Optimal Thermal Systems

Schedule a presentation:

Email: Chris@optimalthermalsystems.com Technical Questions:

Email: Mike@optimalthermalsystems.com

Phone: (443) 333-2129