Behavioral Economics for Abuse Potential Assessment

Steven R. Hursh, Ph.D. September 2023

INSTITUTES FOR BEHAVIOR RESOURCES, INC.

Shaping a better world

Overview

- Benefits of demand curve assessment for scaling abuse potential based on consumption price sensitivity or Essential Value (EV).
- Show dose independence and replicability of findings.
- Summarize EV across pre-clinical studies with primates showing applicability for scaling abuse potential.
- Demand curve examples from rodent work to show that this is a feasible methodology that is stable over time.
- Human hypothetical demand mirrors non-human data for assessing abuse potential.

Demand Curves with Varying Price Sensitivity

Consumption at a low price does not necessarily predict consumption at higher prices

 $EV = f(1/\alpha)$ Lower price sensitivity is associated with greater Essential Value.

Behavioral Economic Advantage for Abuse Potential Essential Value is a Graded Scale of Abuse Potential

Drug Demand Curves with Multiple Doses Self-administration in Monkeys

3-Parameter: $\log Q = \log(\mathbf{Q}_0) + \mathbf{k}(e^{-\alpha \cdot Q_0 \cdot C} - 1)$ 2-Paramter: $\log(Q) = \log(\mathbf{Q}_0) \cdot e^{((\alpha/\log(\mathbf{Q}_0)) \cdot Q_0 \cdot C)}$

> Alfentanil EV = 461 Cocaine EV = 368 Methohexital EV = 156 Nalbuphine EV = 116

Real Price

 $Q_0 \cdot C$

Dose independence is not always true, but assessment is simplified by scaling that is relatively insensitive to dose and driven by the essential value of the drug.

Reliability of Demand Determinations *Two Primate Studies Seven Years Apart*

Drug Abuse Liability Ranking - Two Parameter Demand Equation

Drug	EV	Relative EV (Fentanyl)	
Food (Closed Economy)	957	3.52	
Remifentanil (Ko et al.)	543	2.00	
Alfentanil (2002)	485	1.78	
Alfentanil (1995)	461	1.69	
Cocaine (2 higher doses)	368	1.35	
Ketamine	358	1.32	
РСР	290	1.07	
Fentanyl	272	1.00	7PEn Model
Saccharin (Open Economy)	186	0.68	EV = $1/(100 * \alpha)$
Methohexital	156	0.57	ZBEIT Model, no k
Nalbuphine	116	0.43	
Dizocilpine	52	0.19	IBK

Rat Demand for Fentanyl and Heroin

Development of Inelastic Demand for Fentanyl

McConnell, et al. 2021: 3 sec of fentanyl vapor.

Fentanyl Initial EV = 4 Fentanyl Escalation EV = 10

Human Hypothetical Demand for Abuse Liability

McKillop, et al., 2018

Hypothetical Demand Sensitivity to Different Drugs - OUD Patients

Heroin EV = 1.09 Cocaine EV = 0.76 Benzo EV = 0.69 Chicken EV = 0.49

Summary

- Drugs that are equal in sustaining consumption at a low price may be very different in sustaining consumption at higher prices – they differ in price sensitivity or essential value.
- Standardized methods for demand curve assessment can provide a parametric scaling of essential value as a forecast of varying degrees of abuse potential.
- BE method increases the precision of abuse potential assessment by exploring a range of "market prices" to better forecast real-world use.
- Methods can be applied to rodents and have been shown to be reliable, but a demonstration of rank ordering of a sample of drugs is needed.
- Similar methods can be used with human volunteers providing hypothetical estimates of consumption across a range of prices.

References

- Christensen, C. J., Silberberg, A., Hursh, S. R., Roma, P. G., & Riley, A. L. (2008). Demand for cocaine and food over time. Pharmacology, *Biochemistry & Behavior*, 91, 209-216.
- Harrigan, S. E., & Downs, D. A. (1978). Continuous Intravenous naltrexone effects on morphine self-administration in rhesus monkeys. *Journal of Pharmacology & Experimental Therapeutics*, 204, 481-486.
- Hursh, S.R. (1980). Economic concepts for the analysis of behavior. Journal of the Experimental Analysis of Behavior, 34, 219-238.
- Hursh, S.R. (1984). Behavioral Economics. Journal of the Experimental Analysis of Behavior, 42, 435-452.
- Hursh, S.R. (1991). Behavioral economics of drug self-administration and drug abuse policy. Journal of the Experimental Analysis of Behavior, 56, 377-393.
- Hursh, S.R. (2000). Behavioral Economic Concepts and Methods for Studying Health Behavior. In *Reframing Health Behavior Change with Behavioral Economics*, Eds.: W.K. Bickel and R.E. Vuchinich. Mahwah, NJ: Lawrence Erlbaum Associates, pp 27-60.
- Hursh, S. R. Raslear, T. G., Shurtleff, D., Bauman, R. and Simmons, L. (1988). A cost-benefit analysis of demand for food. *Journal of the Experimental Analysis of Behavior*, 50, 419-440.
- Hursh, S. R., & Roma, P. G. (2016). Behavioral Economics and the Analysis of Consumption and Choice. Managerial and Decision Economics, 37, 224-238.
- Hursh, S.R. and Winger, G. (1995). Normalized Demand for Drugs and Other Reinforcers. Journal of the Experimental Analysis of Behavior, 64, 373-384.
- Greenwald, M. K. & Hursh, S.R. (2006). Behavioral economic analysis of opioid consumption in heroin-dependent individuals: Effects of unit price and pre-session drug supply. *Drug and Alcohol Dependence*, 85 (1), 35-48.
- Ko, M.C., Terner, J., Hursh, S., Woods, J.H., and Winger, G. (2002) Relative reinforcing effects of three opioids with different durations of action. *J. Pharmacol Exp Ther* 301: 698-704, 2.
- Madden, G. J., Bickel, W. K., & Jacobs, E. A. (2000). Three predictions of the economic concept of unit price in a choice context. *Journal of the Experimental Analysis of Behavior*, 73, 45–64.
- Winger, G., Hursh, S.R., Casey, K.L., and Woods, J.H. (2002). Relative reinforcing strength of three n-methyl-D-Aspartate antagonists with different onsets of action. J. Pharmacol Exp Ther 301: 690-697, 2.
- Winger, G., Woods, J.H. and Hursh, S.R. (1996) Behavior maintained by alfentanil or nalbuphine in rhesus monkeys: fixed-ratio and time-out changes to establish demand curves and relative reinforcing effectiveness. *Exp and Clinical Psychopharm*, 4, 2, 131-140.

Sensitivity of Demand to Alternatives

Greenwald and Hursh, 2006

- Demand for an opioid is sensitive to a "free" alternative opioid.
- Model for methadone assisted treatment.
- However, market demand is INSENSITIVE to available alternatives at low market prices (Hursh, 1991; Greenwald & Hursh, 2006).
- Implies that demand for treatment will also be sensitive to market price.
- Foreshadowed current events, 2023.

Essential Value Differentiates Ketamine, PCP, and Dizocilpine *Time to Peak Effect Relates to EV*

Based on Winger, G., Hursh, S.R., Casey, K.L., and Woods, J.H. (2003)

Rat Demand Curves for Fentanyl *Dose Independence of Essential Value*

VCU Data courtesy of S. Negus and M. Banks

