Preclinical Study Design Considerations

Anton Bespalov, MD, DMedSci Partnership for Assessment and Accreditation of Scientific Practice Heidelberg, Germany

> Thomas Hudzik, PhD ALA+ BioPharma Consulting

CCALC, September 27-28, 2023

Disclosures

Anton Bespalov is Co-founder and managing partner at PAASP GmbH, a Shareholder at PAASP US LLC, Co-founder and CSO / managing director at EXCIVA GmbH

Thomas Hudzik is a consultant for pharma, NIDA, biomedical research institutions, World Anti-Doping

Outline

- Definition of a 'good' study design
- Blinding
- Randomization
- The power and peril of pre-specification of endpoints

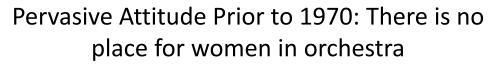
Recommended (re)Reading

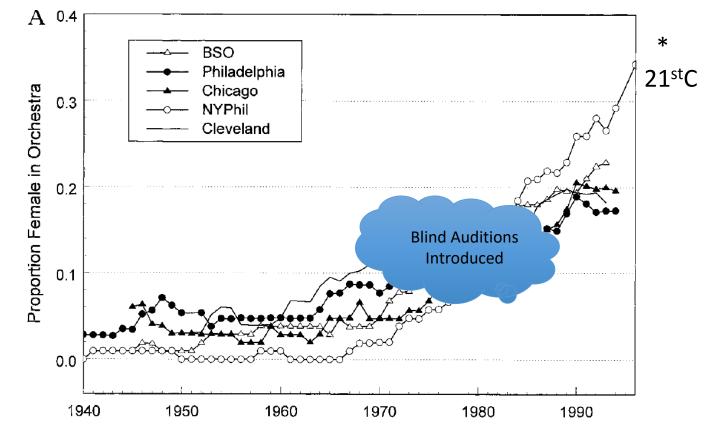
Why Most Published Research Findings Are False

John P. A. Ioannidis

PLoS Medicine August 2005 | Volume 2 | Issue 8 | e124

Elements of Good Study Design


- 'Good' Definition: data output
 - High validity, fidelity, replicability
- Achieved by study design that minimizes bias, maximizes rigor
 - Powering, blinding, randomization, use of appropriate controls, training, statistics, record-keeping, use of positive controls and comparators, pre-specification (endpoints, comparisons made, etc)


Outline

- Definition of a 'good study design'
- Blinding
- Randomization
- The power and peril of pre-specification of endpoints

WHY BLIND?

www.curt-rice.com

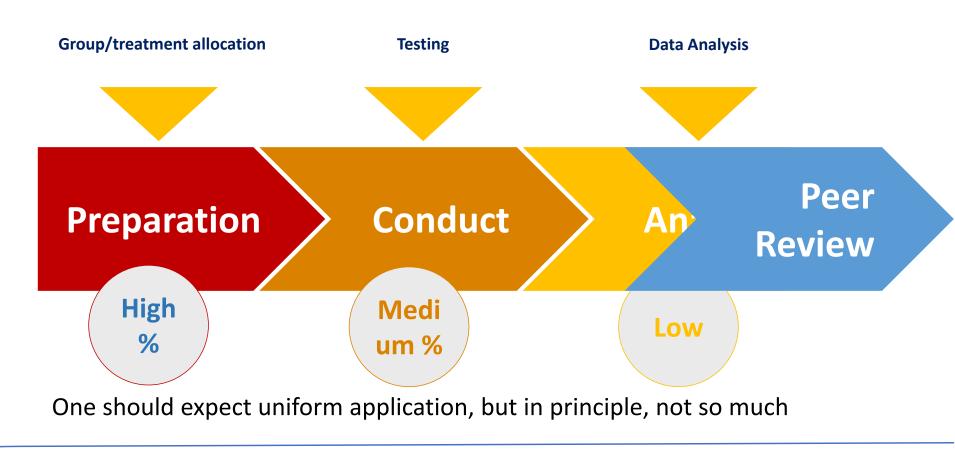
Goldin & Rouse (2000) American Economic Review 90: 715

Unbiased study design

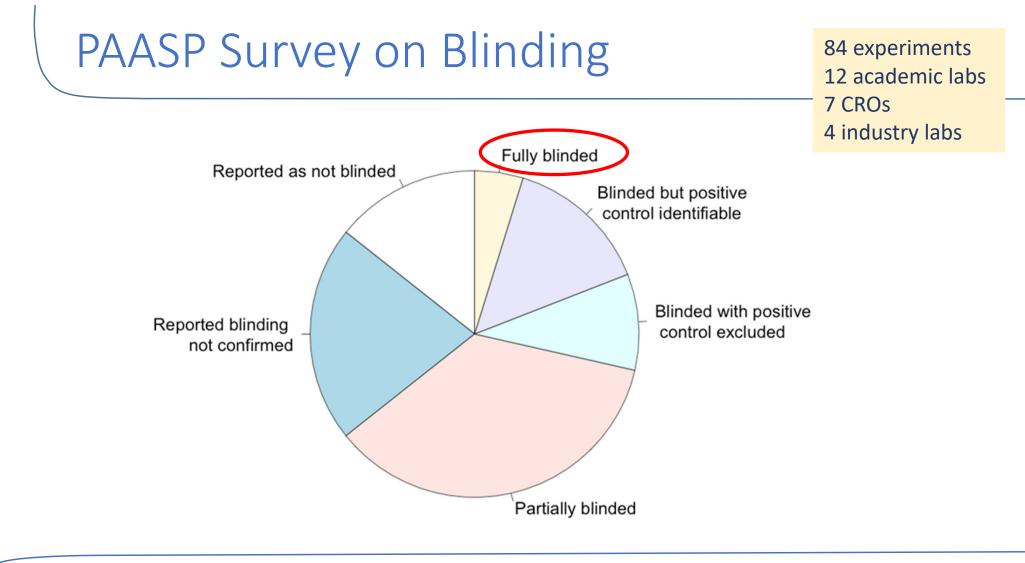
7

Blinding

Overestimation of treatment effect size Increased false positive rate META-RESEARCH ARTICLE


A qualitative study of the barriers to using blinding in in vivo experiments and suggestions for improvement

Natasha A. Karp^{1*}, Esther J. Pearl², Emma J. Stringer³, Chris Barkus², Jane Coates Ulrichsen⁴, Nathalie Percie du Sert²


1 Data Sciences & Quantitative Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, United Kingdom, 2 NC3Rs, London, United Kingdom, 3 Biomedical Services Unit, University of Birmingham, Birmingham, United Kingdom, 4 Early Oncology, AstraZeneca, Cambridge, United Kingdom • https://doi.org/10.1371/journal.pbio.3001873

- Far less uptake than other design principals
 - Resource, culture, practical constraints as primary reasons
 - False belief that it doesn't improve studies
- Reported in only 12% of in vivo papers
- Of these, few provide details on methods of blinding, including which parts of experiment are blinded

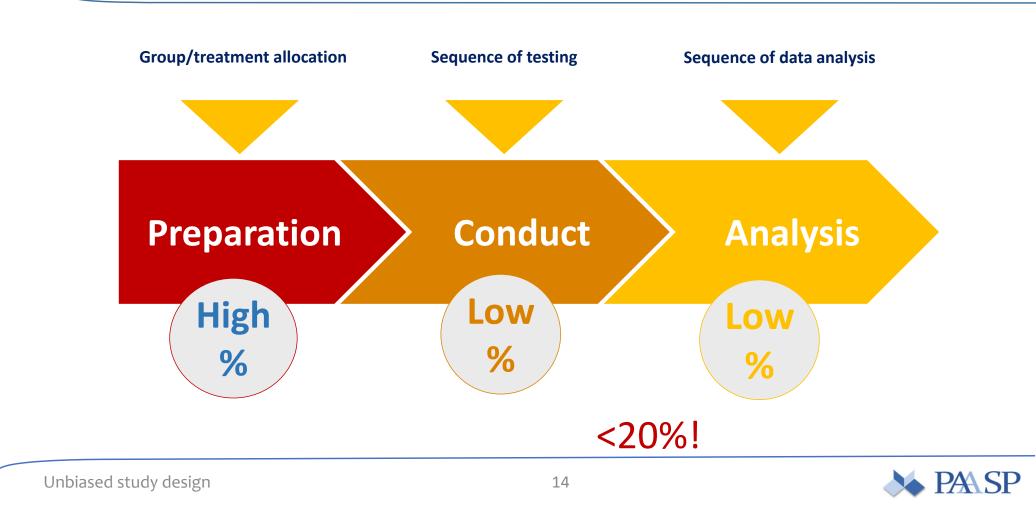
Blinding application by experimental stage

Outline

- Definition of a 'good study'
- Blinding
- Randomization
- The power and peril of pre-specification of endpoints

PAASP Survey on use of randomization

- 30 CROs performing GLP safety studies contacted
 - 73% responded (22/30)
 - 45% (10/22) reported applying methods of randomization in all studies
 - 42% (5/12) will apply randomization only when requested by sponsors
 - 45% (10/22) will use a specialized tool to generate randomization sequence (although many, many freely available)



Procedures used for assignment of subjects to treatment groups (multiple answers)

Method	Used	Remark
Simple alternation	<mark>64%</mark> (9/14)	Not randomization
Matching	<mark>71%</mark> (10/14)	Not randomization
Latin square	<mark>29%</mark> (4/14)	Pseudo-randomization
Block design or	<mark>36%</mark> (5/14)	Ca-ching!
Simple randomization	<mark>7%</mark> (1/14)	Risk of unbalanced allocation w/ low N

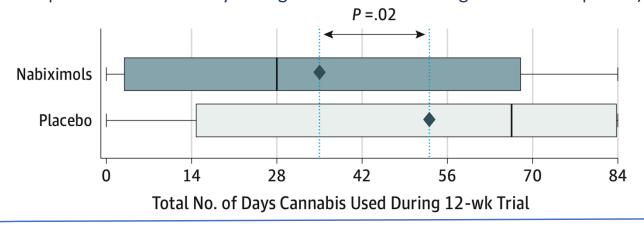
Randomization application by experimental stage

What if randomization is not done properly?

- You have to decide whether:
 - Can blinding still be applied?
 - Can the impact of stratification variables still be evaluated?
 - Is statistical power reduced and sample sizes need to be increased?
 - Is the statistical method chosen can still be applied?

You have to be transparent about it

Pre-Specification of Endpoints


JAMA Internal Medicine | Original Investigation

Nabiximols for the Treatment of Cannabis Dependence A Randomized Clinical Trial

CONCLUSIONS AND RELEVANCE This study demonstrates that cannabinoid agonist treatment, in this case using nabiximols, in combination with psychosocial interventions is a safe approach for reducing cannabis use among individuals with cannabis dependence who are seeking treatment. JAMA Intern Med. 2019;179(9):1242-1253

• Primary End Point reported in the paper:

Frequency of cannabis use (Self-reported number of days using illicit cannabis during the 12-week period)

JAMA Internal Medicine | Original Investigation

Nabiximols for the Treatment of Cannabis Dependence A Randomized Clinical Trial

CONCLUSIONS AND RELEVANCE This study demonstrates that cannabinoid agonist treatment, in this case using nabiximols, in combination with psychosocial interventions is a safe approach for reducing cannabis use among individuals with cannabis dependence who are seeking treatment. *JAMA Intern Med.* 2019;179(9):1242-1253

 Primary End Point reported in the paper: 	
Frequency of cannabis use	Reported
(Self-reported number of days using illicit cannabis during the 12-we	eek period)

JAMA Internal Medicine | Original Investigation

Nabiximols for the Treatment of Cannabis Dependence A Randomized Clinical Trial

CONCLUSIONS AND RELEVANCE This study demonstrates that cannabinoid agonist treatment, in this case using nabiximols, in combination with psychosocial interventions is a safe approach for reducing cannabis use among individuals with cannabis dependence who are seeking treatment. *JAMA Intern Med.* 2019;179(9):1242-1253

 Primary End Point reported in the paper: Frequency of cannabis use (Self-reported number of days using illicit cannabis during the 12-week period) 	Reported
 Primary Outcomes specified in the trial registry and protocol A: Unsanctioned cannabis use will be quantified as 4-weekly point prevalence abstinence during the 12-week maintenance phase Unsanctioned cannabis use will also be reported as mean days used, and percentage of positive urine drug screens. B: Treatment retention (days in protocol treatment) 	Not reported Reported Not reported Reported (no treatment effect)

Summary

- We can do a much better job of minimizing bias in our studies
- Blinding and randomizing across all study stages is an initial hassle, but vital in generating repeatable study outcomes
 - GSK and AZ have mandated and enforced rigor for all internal and external in-vivo studies, which has facilitated application in all study types
 - 2024 publication on the 'what and how'

Free-to-use resources for testing rigor

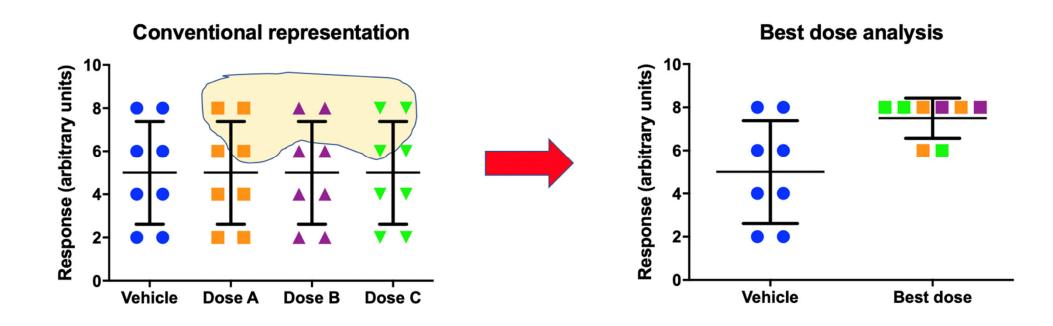
Enhancing the QUAlity and Transparency Of health Research

National Institutes of Health

Unbiased study design

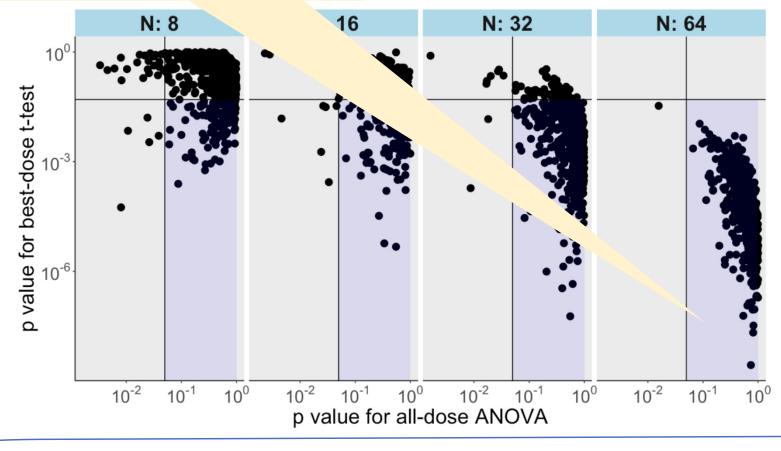
Extras

Heads I win, tails you lose


Scenario	Positive control worked	Positive control failed
My drug worked		???
My drug failed		

If the use of study outcomes for decision-making is not pre-specified, studies can be designed to bias the interpretation in a favored direction

Unbiased study design



Heads I win, tails you lose

With the sample size large enough, best-dose analysis can turn almost YOU IOSE any negative study into positive

Be alerted to false discovery rate!

- Effect size tends to be over-estimated in:
 - under-powered studies
 - studies with low internal validity (i.e. studies with uncontrolled bias)
 - studies reporting "unexpected" results

Why Most Published Research Findings Are False

John P. A. Ioannidis

PLoS Medicine August 2005 | Volume 2 | Issue 8 | e124

Unbiased study design

Pre-specification ...

... does not change the data

... builds confidence in data, improves validity

Types of Research Bias:

1.Selection Bias 2.Measurement Bias **3.Recall Bias** 4. Publication Bias 5.Confirmation Bias 6.Reporting Bias 7. Experimenter Bias 8.Sampling Bias **9.Analysis Selection Bias 10. Procedural Bias**

