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Abstract. The challenge to creating buildings that intelligently respond to local 
environmental conditions while respecting cultural needs is increasingly 
dependent on hybrid computational workflows that are flexible and adaptive to 
designers’ creative decisions and needs. We propose a novel approach where 
Cellular Automata (CA)—simple digital building blocks that evolve via 
programmed rules—act as teachers to Machine Learning (ML) systems, which 
learn patterns from data to automate and accelerate tasks. Our framework uses CA 
states to translate site-specific intelligence (e.g., solar instances or cultural 
landmarks) into training protocols for ML, enabling rapid generation of 
context-sensitive solar designs. Through workshops with 20 architects across 12 
countries, we tested the framework and results showed how CA successfully 
encoded environmental constraints into ML and significantly reduced computation 
time. However, the pipeline required significant human refinement and spontaneity 
to resolve computational bottlenecks, highlighting human-machine collaboration. 
Critically, we argue that automation’s value lies not in replacing designers but in 
structuring a pedagogical collaboration: Humans define contextual priorities, CA 
formalises them into teachable rules, ML accelerates application. Our work 
ultimately questions whether intelligence can scale without collaboration, offering 
technology not as a solution but as a framework for negotiating this tension. 

Keywords: artificial intelligence; bio-inspired design; solar architecture; discrete 
computation; human-machine interaction 
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1 Introduction 

Machine Learning (ML) algorithms are the applications through which Artificial 
Intelligence (AI) is achieved. In other words, if AI describes an intelligent 
computer program, ML comprehends the algorithms that allow such intelligence 
to exist. These algorithms usually learn by progressively improving as it iterates 
over a large dataset, or contexts that provide this data. Through the iterative 
process, ML algorithms tune itself to achieve the expected behaviour, such as  
finding deep patterns across data points, or predicting future states of data, or even 
predicting how it should behave in an unseen scenario. This is what allows it to 
automate intellectual tasks.  

As technology quickly progresses, it is not easy to determine what ML 
algorithms are and will be able to achieve, but one can say that the current 
application of these is overall limited not simply by hardware or cloud capacity, 
but creative implementation methods that can overcome such limitations; that said, 
the development and application of ML algorithms requires cautious reflections. 
Algorithms will carry over the biases that are present in the data it consumes, or 
the crafted environments it learns from. Consequently, the process of selecting or 
creating the data that a ML system will consume is a crucial step in designing its 
application. A dataset that is not carefully constructed can lead to a training 
process that outputs an unfit model, or, in social applications, reinforce prejudices 
and problematic behaviours. This research, however, seeks to use biases as an 
advantage – it seeks to embed specific bias in the creation of custom datasets as a 
means of formulating human-machine interaction. 

The project’s premise is to focus on the creation of the dataset, with the help of 
other synthetics intelligences, such as Cellular Automata (CA) to determine the 
ML algorithms behaviour. CA is a discrete computational model that is well-suited 
to simulating contextual information to a certain extent because they explicitly 
model local interactions between cells based on their neighborhood states. It is 
often used in architecture design to simulate complex patterns through controlled 
input, such as solar radiation. By embedding the characteristics of such rule-based, 
computationally demanding processes into the dataset that will be used for 
training, the objective is to capture into a ML model a design process that, 
originally would take several hours, can be executed relatively instantaneously.  

The expected result is an algorithm that is capable of predicting 3-dimensional 
shapes in a given urban context, that could be used to populate architectural 
elements in a manner that maximises solar incidence, with the end goal of also 
maximising the capability of a structure to harvest energy from photovoltaic 
elements or through passive solar strategies. How can rule-based systems 
translate contextual information to teach AI in automating repetitive and 
computationally heavy tasks, and synergistically enhance human creativity in 
sustainable architecture? 
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2 Literature Review 

Generative Adversarial Networks (GANs) is a class of ML models designed for 
generative tasks, which was quickly adopted by architectural design disciplines, as 
it presents a novel approach to automate image generation, from building layouts 
to spatial renderings (Chaillou, 2019). However, as GANs operate on pixel data, 
questions arise over how it can be embedded with relevant contextual information 
beyond simple form-finding, such as environmental and cultural considerations, to 
ensure that the generated designs are contributing to sustainable development 
goals. Recent advances in bio-inspired computational design highlights the critical 
tension of how ML algorithms can synergistically enhance human creativity, with 
three key debates. 

First, The Digital Universalism in Computational Design. While Frazer’s 
(2002) evolutionary architecture prioritized top-down optimization, contemporary 
research leverages bottom-up biological intelligence for sustainability. For 
instance, Ertan and Adem (2024) showed how discrete aggregation of timber units 
can encode craftsmanship, presenting data aggregation as a form of cultural 
expression, responding to Charitonidou’s (2022) critique of "digital universalism". 

Second, Translating Theoretical Automata to Design Agents. While classical 
Cellular Automata (CA) theory (Wolfram, 2005) emphasized emergent complexity 
from simplicity, recent work integrates environmental data. Reimagined discrete 
aggregation discourses (Retsin, 2019; Kohler, 2017) prioritised ecological and 
topological assembly, but discounted evaluating the knowledge transfer between 
algorithms. 

Third, Data Biases as Design Opportunities. ML’s rise intensified debates about 
agency and contextual sensitivity. Work exploring the relationship between text, 
images, and form in ML (Koh, 2020; Bolojan, 2021) established linguistic and 
visual principles for stylistic exploration; simultaneously, it highlighted the role of 
unintentional factors or biases in the learning process. This reframed operational 
bias as a vehicle for embedding priorities into a dataset.  

Across these cases, discrete computation was the trigger for complexity via 
simplicity. In the case of CA, the outcomes are based on the interplay of basic 
growth rules in a strict relationship with an environment. The best feasible 
solution to the interaction of these components in an n-dimensional space is the 
outcome. As a result, such aggregation logic favours choices above ideal solutions 
in a dynamic process that is always changing—Dynamism. Therefore, working 
with aggregated shapes and adding characteristics that define a CA, we may 
produce a spectrum of outputs that speculatively inform the solution space, with 
seeds acting as agents and geometrical outputs acting as aggregation rules. This 
allows for the testing of different data inputs, such as solar radiation to enhance a 
building’s light-harvesting quality and iterate options in an evolutionary manner. 

This presents an opportunity to synthesize cross-intelligence systems for 
tailored cases, responding to specific disciplinary needs. This study uses CA to 

https://developer.nvidia.com/blog/archigan-generative-stack-apartment-building-design/
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train ML models for architectural acceleration and contextualisation—a gap that 
our "CA-as-teacher" pipeline addresses. This positioned CA not as a 
form-generator but as a bridge between designer intuition (rule definition) and ML 
efficiency (pattern replication), shifting CA from a computationally-heavy 
application to an intelligent pedagogical tool for ML.  

3 Methods 

Addresses the research gap between discrete computation, biomimicry, and ML 
contextualization in architectural design, this research responds to limitations 
identified in our prior CA-to-GAN pipeline (Ng et al., 2021; 2022), which 
encountered three critical challenges: 

1. Rigid discretization hindered organic form and cultural adaptation 
2. Inadequate control for contextual variables (local resources, aesthetics) 
3. Computational bottlenecks in translating CA outputs to design solutions 

To resolve these, we developed a novel three-phase methodology.  
PHASE 1: CA-ML Pipeline Enhancement with Houdini. Houdini's procedural 

environment enabled three key innovations, including biologically-grounded 
growth simulation, adaptive discretisation with dynamic voxel resizing (5-50cm³) 
responding to solar incidence thresholds, and data standardization with lossless 
translation between CA states to generate adaptive design outputs.  

PHASE 2: Cross-context Deployment. A series of workshops were organised 
where 20 designers from 12 countries worked in teams of 4 to test the pipeline, 
following a task protocol.  

1. Select hometown context with documented climatic/cultural constraints 
2. Generate climatic data using CA to train GANs 
3. Translate CA states into Houdini to create baseline design solutions 
4. Iterate designs with human-GAN feedback to accelerate the process 

PHASE 3: Benchmarking. Comparing rule-based and ML workflows in terms 
of time per generation, total computational time, and data volume.  

Table 1 The algorithmic components and specification of the proposed hybrid workflow. 

Component Specification Role 

Houdini 19.5 VEX-based growth algorithms Bio-inspired form generation 

Rhino 3D Galapagos evolutionary solver Solar optimization 

PyTorch Custom pix2pix  ML acceleration 

RTX 4090 48GB VRAM Training/inference 

https://www.researchgate.net/publication/351710030_AI_Inform_Intelligence_and_Aggregation_for_Solar_Designs_in_the_Built_Environment
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Fig. 1 A CA "seed" may generate a large set of outcomes by activating the discrete grid state 
from a simple on and off (0 to 1) in its basic form, controlled by predefined rules, such as solar 
radiation predictions, suitable for context with low data resolutions. 
 

 

Fig. 2 The 3D data flow creates a feedback loop between Rhino and Houdini using discrete 
aggregation logic of CA, with voxel as proxy to define the geometry growth. 
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4 Design Outcomes 

These projects hope to demonstrate how the same pipeline can lead to diverse 
design output with its combinatorial quality. The two projects have different 
contexts and local organisms as inspiration: one in the northern hemisphere, one in 
the southern hemisphere. Although both contexts are relatively close to the 
equator, they suffer from different climatic concerns: desert and highland climates. 
Both projects tried to combine active and passive solar strategies into one design 
as the surrounding environments are relatively scarce in resources due to 
socioeconomic or geographical reasons. 

The Sanna Tower is a low-rise refugee shelter design situated in low-income 
fabrics, next to Alawi Mosque, Sharmah, Yemen. The project feedback to local 
society by enabling self-sufficient energy structures. As a seaport country, the 
design took inspiration from commonly found waste materials—discarded 
shipping containers that can be assembled and disassembled easily as temporary 
shelter structures—and upcycle them with PV units into energy resilient refugee 
blocks. The challenge with Modular Integrated Constructions (MiC) is to define a 
distribution logic that utilizes the site boundary effectively without homogenising 
the landscape. Participants learnt from the aggregation strategies of Marine 
Sponge: the organisms stack upon one another without being in direct competition 
for light. Here, sunlight instances became an instructor of CA distribution.  

The coast of the Red Sea (Tihamah) has a desert climate, generally hot but 
suffers from daily temperature differences that range from 15-35°C in inland areas. 
Being relatively close to the equator, daylight often comes from most directions all 
year round. 
 

 

Fig. 3 The Sanna Refugee Tower. Participants credits: Chowon Kang, Yutong Zhang. 
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The design utilised a combination of active and passive solar strategy by 
playing with the orientation of units. Participants considered installing windows 
made with Luminescent Solar Concentrators (LSCs), which are ultra low-cost 
plastic doped with fluorescent dyes that harvest light while keeping windows 
semi-transparent.  

The design process began with solar simulation to structure a voxel grid with 
CA, then upsampled the voxel grid with container models. The same process was 
carried out over a number of sites in adjacent areas to find out which site is the 
best for light-harvesting. Finally, participants chose this Mosque, which is a 
cultural site for solidarity, religious services and charity work, and the area has 
shown to have more Mosques than supermarkets. The flexibility allows for the 
same workflow to be applied to each of those sites to assess possibilities of  
temporary towers.  

The L1ch3nic Sph3ribl0b5 is a project designed for hikers on the highland of 
Markawasi Plateau Geopark, Lima, Peru. The hiking tracks are in far locations, the 
project offers resting spots which would provide water, electricity, and light for the 
travellers. Participants speculate on micro-spherical solar cells and 
vapour-harvesting design for a combination of active and passive strategies.  

Spherical solar cells are an emerging technique that tries to tackle daylight 
direction problems. As sunlight is not uniform in the natural environment and the 
sun is always moving, the typology of the sphere helps to catch light coming from 
all directions, ensuring at least 50% of the overall surface is in contact with light at 
all times, even catching those reflected and refracted from clouds and water. The 
design also includes a structural component and a web that catches and condenses 
vapour from the temperature change at dawn to provide water.  
 

 

Fig. 4 The LICHENIC SPHERI-BLOBS. Participants credits: Carlos Rivera, Manuel Halim, Gao 
Xiang, and Mason Mo. 

 



8   

 

Fig. 5 Learning from Thallus Lichen that is often found in the highlands and able to collect 
moisture in the air, Participants simulated the growth pattern in houdini, which were then 
discretized into voxels. Afterwards, they trained the ML pix2pix with solar data, and the output 
in pixel format was then stacked into voxels. Finally, the second set of voxels output were 
imported back in houdini to transform the growth pattern.  

5. Comparing Computational Performance  

Comparing CA as the teacher and GAN as the student, they outperformed each 
other at different tasks. CA for optimization relied on population-based methods, 
utilizing selection, mutation, and crossover to refine candidate solutions. These 
algorithms directly optimize design parameters or structures by evaluating their 
fitness in Rhino3D. These simulations were computationally expensive, requiring 
substantial time and resources, with evaluations taking hours to days for a 
thousand generations. They did not require pre-existing datasets and are suitable 
for contexts with low-resolution data (e.g. a single screenshot, satellite images); 
they did, however, need significant data storage for simulation results and 
population data. Despite the high computational costs, CA maintained a diverse 
population, allowing for multi-objective optimization and producing high-fidelity 
solutions based on physics simulations. 

GANs operated on the core principle of adversarial training between generator 
and discriminator networks. They were designed to learn and generate realistic 
data distributions, which could be adapted to generate optimized designs very 
quickly when trained (within seconds vs the hours needed by CA). However, 
GANs require datasets of images or structures for training, and are often difficult 
to apply to low-resolution targets, such as those sites chosen by participants of our 
workshop. The algorithmic quality is highly dependent on the dataset's size and 
diversity, thus, they make great students for CA, which could evolve solutions 
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from very little data but takes a long time to process. Although GANs training 
could be computationally intensive, often taking hours on GPUs, once completed, 
inference was remarkably fast (within seconds). Further, it required much less 
storage capacity compared to CA.  

Overall, CA were best suited for direct optimization problems with explicit 
fitness functions, while GANs excelled in generative modeling and rapid design 
synthesis post-training. CA had straightforward evolutionary steps, but the 
evaluations were costly, whereas GANs involved complex adversarial training. 
When combined for hybrid approaches, design iterations could leverage the 
strengths of both methods, balancing quality with time costs.  

Table 2 Comparing computational performances of CA as the teacher and GAN as the student. 

Aspect CA GAN  

Iterations/ 
Generations 

900–1000 evolutions for 
convergence. 

600 training iterations, 500 
samples, 256x256 px each.  

Compute 
Time 

6–7 hours for 900–1000 
generations. 

8–10 hours on GPU. After 
training = ~instantaneous. 

Data 
Storage 

70 GB for 900–1000 
evolutions. 

2–4 GB (200 MB checkpoints 
× 12 saves over 600 iterations). 

Intermediate 
Data 

High (simulation outputs, 
population states). 

Moderate (gradient updates, 
logs). 

Hardware CPU (parallelization limited 
by simulation bottlenecks). 

GPU-accelerated (training); 
CPU/GPU for inference. 

Scalability Time/data grow linearly with 
generations. 

Storage scales with 
checkpoints; training time 
depends on the dataset. 

Use Case 
Suitability 

Context with little data; 
generating synthetic data 

Data-rich context; almost 
instantaneous inference. 

 

6. Human-Machine Collaboration 

Although the pipeline has been shared in the same manner, each team of 
participants deployed it with variability. The most common workflow can be 
summarised as follows.  
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After preliminary contextual and bio-inspired research for concept framing, 
designers started the algorithmic process in three ways: (a) a parametrically 
defined form, (b) a set of manipulatable data points, or (c) solar simulation to 
structure a voxel grid.  

The main challenge was how the complexity of bio-inspired form can be 
processed by solar analysis and CA with the least amount of computing power and 
run time so the pipeline can be democratised amongst team members with varying 
computing capacity.  

Two solutions came up. The first was demonstrated by LICHENIC 
SPHERI-BLOBS: asking the CA to teach ML, which automated tasks in an 
instantaneous manner when trained. The second was tested by The Sanna Tower: 
separating the generation of complex geometry and instruction of unit aggregation. 
The former can be done with (a) & (b), whereas the latter are done with (c) as 
geometry proxies: the voxels are taken as empty data vessels that can be 
upsampled with complex geometries in Houdini.  

In this way, the computing power and time are largely minimised because CA 
were only processing a set of boxes, although it could compromise the accuracy 
on a micro-level, the evaluation on a macro-scale remained relatively the same. 
The key here is to balance the resolution of the discrete grid over the predefined 
volume. However, it could raise issues of continuity between discrete units in later 
design phases, which has to be solved through designer intents. There were 
generally two approaches to tackle it: discretise a continuous shape or aggregate 
discrete units with connectors, which the selected projects had illustrated.  

The overall design process took 3-5 days.  
 

 
Fig. 5 The proposed hybrid workflow combining CA, ML, and Houdini growth algorithms to 
balance between computational efficiency and designer needs.  
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The tensions and opportunities negotiated through this technological framework 
was critically captured by participants’ reflections: 
 

“Through this iterative design workflow, a proposal is able to adapt to different conditions in 
the same environment, and opens up possibilities for different alternative designs. We 
architects base our design skills and criterias on personal learning experiences. AI does 
pretty much the same, with the difference that it has the capacity of choosing 
combinatorial paths of data that us, human beings, wouldn't even be capable of thinking of. 
AI allows us to see things that we are not able to see at first sight".” 
 

“Through this workshop pipeline, a symbiotic relationship between human and machine 
has been created. Decisions made by the architect, evaluated by machine, getting a 
product, and going back again in the loop. A question is posed for the future. What 
exactly is the architect's role in such a design process?” 
 

“The future of design relies on self-configuring architecture. With all the design extension 
tools that architects have got at the moment, we can make such accurate proposals that 
can adapt to the slightest environmental changes; per month, per day, per hour, per 
minute. This fact clashes with the reality of today's architectural products;  the static, the 
perpetual.” 

 
On this note, the collaboration was not simply human-machine, but also 
machine-machine and human-human, without whom, the diverse understanding of 
the experiment would not have been possible.  
 

 
Fig. 6 Participants’ diagrammatic reflection on human-machine collaborative workflows.  

7. Discussions & Conclusions 

By exploring the role of CA as pedagogical agents to translate contextual 
intelligence into trainable protocols for ML, the study contributed to three critical 
gaps in architectural computation: 1) the contextual void in AI-driven design, 
where prior approaches prioritized stylistic generation over environmental-cultural 
synthesis; 2) the scalability limits of rule-based systems, overcoming compute 
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bottlenecks through ML acceleration; 3) the biomimicry implementation gap, 
moving beyond aesthetic metaphors to elements distribution logic.  

The outcomes highlight a pedagogical paradigm where synthetic intelligence 
learns from each other into self-advancement, guided by human priorities and 
needs. The experiemnts tried to navigate the complexity of implementing symbolic 
automata with connectist ML by treating contextual information as a scaffold for 
neural networks. By doing so, it also tests the boundaries of translating between 
discrete computations’ rigor with organic design expressions.  

However, several limitations must be acknowledged, including the closed-loop 
feedback between synthetic datasets, which indicated that real-world performance 
validation remained a future endeavour. Additionally, cultural adaptation relied 
heavily on designer intervention, indicating a careful design of engagement 
protocols with decision nodes alongside computational automation procedures. 
Finally, there is an opportunity to align discrete and voxel based computation with 
BIM or supplier databases to enhance implementability of the designs. 

As sustainable architecture confronts escalating climatic and socioeconomic 
complexity, this research argues for machines that learn contextually—not 
autonomously—as students of ecological wisdom and a human-steered interpreter 
of the world. The findings and limitations pointed to areas for further research in 
the quest for a more site-sensitive and design-adaptive computational process. 
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Mo; and Digital Futures for facilitating a workshop platform.  
 

References 
1. Bolojan, D., et al. (2023). Latent Design Spaces: Interconnected Deep Learning 

Models for Expanding the Architectural Search Space. In Architecture and Design for 
Industry 4.0 (pp. 201-223). Cham: Springer International Publishing 

2. Chaillou, S. (2020). Archigan: Artificial intelligence x architecture. In Architectural 
intelligence: CDRF 2019 (pp. 117-127). Singapore: Springer Nature Singapore. 

3. Charitonidou, M. (2022). Towards a civic approach to urban data: The myths of digital 
universalism. Computing, 20(2), 238-253. 

4. Ertan, İ. B., & Adem, P. Ç. (2024). Computational Design with Kurtboğaz: The 
Generation of Timber Structures with an Aggregative Design Algorithm. Journal of 
Computational Design, 5(2), 235-258. 

5. Frazer, J. (2002). A natural model for architecture: The nature of the evolutionary 
model 1995. Cyber Reader Critical Writings for the Digital Era, 246-255. 

6. Koh, I. (2023). Architectural and Social ‘Word Forms’ Slippage with Deep Learning. 
In CAAD F (pp. 112-125). Cham: Springer Nature Switzerland. 

7. Köhler, D. (2017). Large City Architecture: the mereological mode of the quantified 
city. Journal of Parallel, Emergent and Distributed Systems, 32(sup1), S163-S172. 

8. Ng, P., et al. (2021). AI In+ form: Intelligence and Aggregation for Solar Designs. 
9. Ng, P., et al. (2022). An Info-Biological Theory Approach to Computer-Aided 

Architectural Design. In CAADFutures (pp. 436-455). Singapore: Springer Singapore. 
10. Retsin, G. (Ed.). (2019). Discrete: reappraising the digital in architecture. Wiley. 
11. Wolfram, S. (2005). Cellular automata. Modeling Chemical Systems. 

View publication stats

https://www.researchgate.net/publication/393711335

	Cellular Automata as a Teacher of Machine Learning: A Human-machine Collaboration to Contextualise Environmental Architecture 
	1 Introduction 
	2 Literature Review 
	3 Methods 
	 

	4 Design Outcomes 
	5. Comparing Computational Performance  
	6. Human-Machine Collaboration 
	7. Discussions & Conclusions 
	References 

