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Abstract. Designers are increasingly challenged by a constant change of context
and the interaction of layers of data from a huge variety of sources, from
natural-artificial to human-machine. This research aims at mapping the interrelations of
energy problems, bio- and artificial intelligence, and human-machine interaction to
reflect and rethink the future of solar design. This paper first discusses its theoretical
approach that stands at the convergence of light-harvesting systems, their aggregation
and intelligence. Afterwhich, this paper explores their translation into iterative
processes between designer and artificial intelligences, which is defined as
rule/agent-based and machine learning systems; in particular, the relationship between
Cellular Automata, Genetic Algorithm, and Generative Adversarial Networks (GANs) is
discussed. Finally, it introduces a design project - @R.E.Ar_ - showing the proposed
combinatorial pipeline and some preliminary results.
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1 Introduction

‘AI in+form’ explores Artificial Intelligence (AI) informed design flows with a
focus on solar designs, where form-finding is not taken simply as an optimal
resultant shape, but information that informs energy circulation. Such
information comprehends beyond a singular unit to the aggregation of units
that operate in a strict relationship with an environment and available energy.
The design process is facilitated by circular feedback between human and
machine intelligence - AI in form informed by information.

Recent material advancements in thin-film smart materials (i.e.
self-cleaning nano structures, electrical chromatic) that are flexible and
lightweight, efficient under indoor lighting and low-voltage, customisable and
economical (techniques like spin coating) offer designers inspiration to new
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solar design discourses (Macdonald, et al., 2019). In particular, carbon-based
materials provide prospects in paralleling bio-mimicking generative designs
with energy exchange mechanisms of organisms, spurring research that looks
deeper into biological systems and their intelligence.

How can designers notate computationally, not just the complexity of the
forms in light-harvesting organisms, but also their aggregation and
distribution, taking solar data as sets of instructions for the design and
arrangements of photovoltaic elements in the built environment?

2. Artificial Intelligence and Aggregation

Artificial intelligence, AI, is the scientific field that studies and attempts “to
build intelligent entities” through virtual agents, which act “to achieve the best
outcome or… the best expected outcome” of a given problem (Russell and
Norvig, 2010). These problems are often associated with the automation of
intellectual labour; however, they are not necessarily designed by mimicking
what humans would do in the same scenario, and their development is done
around the abilities to artificially reason over complex cases and learn from
large datasets to produce specific results. This research is particularly
interested in rule/agent-based and machine learning (ML) systems.

2.1. Rule/agent-based: Cellular Automata (CA)

Cellular Automata (CA) is a physical simulation system that uses an
automaton developed by mathematical computational models running a
limited set of simple rules inside a discrete environment (Von Neumann,
1966). Activating the discrete grid state from a simple on and off (0 to 1) in its
basic form, a CA “seed” can produce an enormous set of results which are
used to solve problems from biology, physics, structures, and urban studies as
a datum of scales. CA's core elements are individualised and defined as
‘Neighbourhood’, ‘Discrete System’, ‘Abstraction’ and ‘Dynamism’ (Wolfram,
2002). Without which, one is not a proper CA System; still, logics of
aggregations can be extrapolated from such systems, focusing on parts and
combinations instead of relationships between different CA seeds in a growing
collaborative process - a complex system in a discrete environment.

From the diversity of patterns that it's possible to create from CA as a
simulation tool, all the richness of CA can be appreciated in terms of possible
emergent patterns with changes in a few parameters in its configurations and
rules, from where the possibles scenarios must be understood so as to
implement these systems as the base of research. The combination of
possible scenarios is a measure of entropy, tying information entropy with that
of energy.



CA belongs to the Automata theory, a theoretical branch of computer
science which has been developed and funded from the 20th century till our
days, developing theoretical and physical machines, dealing with the logic of
computation with respect to simple machines, referred to as automata, by
which scientists can understand how the machines can compute functions
and solve problems (Ulam, 1962). Automatons are abstract models of
machines that perform computations on input by moving through a series of
states or configurations. At each stage of the calculation, a transition function
determines the next setup based on a finite portion of the present
composition. As a result, once the computation reaches an equilibrium
configuration, it accepts that input into a feedback loop. The most general and
consequential automaton is the ‘Turing (1936) machine’.

One of the essential features in CA is the concept related to the
neighbourhood of each cell, with an assigned predefined state (state = 0) that
a set of rules will change, being given a new state (state =1), emerging a new
generation which functions can again reassign for specific purposes and
scales of application. After this process, an “activated” neighbour emerged
from the original discrete universe around the initial cell. The rules usually are
running in a generative way (time), and, in the basic systems of this kind, it
remains fixed; meanwhile, the code is running over this simulated universe. A
cell's neighbourhood definition is determined by the local configuration of the
discrete network in which the “seed” cell itself plus all the directly connected
activated cells (Conway, 1971).

CA started as a discrete cellular system, composed as a finite set of
elements, homogenous in its shapes, and individually isolated as units called
cells. Simultaneously, this system works in a certain amount of time,
generating discrete cycles and a finite set of states (Minsky, 1967). The idea
of discretisation works into CA logic as a complexity abstraction engine
operating by its own geometric simplicity, allowing each cell to evolve in each
step, exchanging a limited set of information from the restricted
neighbourhood (a local action) designed at the process beginning. Discrete at
the end is the catalyst of complexity by simplicity.

Natural patterns are perfectly simulated with this complex system due to its
results based on the interaction of simple growing rules in a strict relationship
with an environment and the rational use of energy and matter in the process.
Being the result, the best possible answer to the interaction of these elements
in an n-dimensional space. Thus, such aggregation logic promotes options
over optimal solutions in an ever changing dynamic process - Dynamism.

Working with aggregated geometries, adding features that can define a
CA, it's possible to achieve a spectrum of outputs that inform the final result
speculatively, opening possibilities of our designs to operate in a hybrid
model, from seeds as agents with geometrical outputs as rules of aggregation.
This facilitates the testing of alternative data inputs, such as solar radiation,
that can dramatically improve the light-harvesting quality of the outcome,



iterating possibilities in an evolutionary way and adding richness to the final
designs.

2.2. Machine Learning (ML)

ML algorithms utilise learning strategies to evolve and achieve an objective,
and are usually trained by being exposed to large amounts of data or
scenarios that they can observe (collect information) and modify (act upon).
These characteristics allow for these algorithms to uncover / discover patterns
and predict future states, such as user preferences on the internet, or
automate computational, cognitive or operational tasks, such as self-driving
vehicles (Zuboff, 2019). While the fast paced development of the technology
makes it hard to define what ML cannot achieve, it hints that the limitations
are mostly defined by the currently available computer hardware; that said,
the use of ML algorithms requires careful considerations to accompany it.

By learning from data or from crafted environments, ML carries the biases
present in its development, rendering the process of collecting and selecting
data for the algorithm to learn from one of the most important steps in the
design of a ML algorithm. A poorly constructed dataset or environment can
lead to the reinforcement of prejudices, unfit predictions and behaviours.
However, this research chooses to take advantage of biases in our application
of ML for the purpose of formulating human-machine interaction.

The intention is to use the data produced in the intuition-based and
computationally intensive design process from rule/agent-based systems to
create the training material that will assist the machine in learning the hidden
patterns of this relationship and predict the results in a relatively
instantaneous manner. More specifically, the algorithm should define a
3-dimensional shape in a given urban context, to the aggregation of
architectural components, following a strategy that maximises the
accumulated solar incidences on the surface of a form, seeking to maximise
the capacity of building structures in producing energy via photovoltaic
elements.

3. A Solar Design Research: @R.E.Ar_

The approach of this research emphasises options over optimal-solutions,
channelling this to diversify solar designs that can be aggregated for diverse
building topologies and user demands. Instead of generating one design to be
used for every solar problem, this research focuses on ‘AI in+formed’
workflows, generating families of designs that are adaptive to each other,
performing aggregation that aims at pertaining to a quartered law of nonlinear
power scaling. With each discrete element to be fabricated in similar methods
using the same mathematical conception. How to enable variational designs



that win over diverse solar vectors in a complex environment through
aggregation?

3.1. Combinatorial Pipeline

Figure 1.  ‘AI in+form’ workshop by @r.e.ar (2021).Combinatorial pipeline:
rule/agent-based and ML system embedding designer intention.

The combinatorial pipeline starts by creating the processes to be automated.
The designer begins by defining a 3-dimensional continuous shape that is
governed by a number of numerical parameters - creating a possibility space
of the conceivable resulting shapes. Over this shape, a visual algorithm is
applied resulting in an aggregation of cubic voxels (3-dimensional elements
that represent a given position and volume in space, while also containing
data). At this stage, a parametric structure is produced by the algorithm,
following the intent of the designer. This structure is then fed into CA with
solar radiation data as seeds that analyse and calculate the accumulated
incidences over the aggregation elements. Lastly, a Genetic Algorithm (GA) is
used to optimise the numeric values (the shape-driving parameters against
the solar analysis), to find the optimal shape for the particular solar problem.
The whole process is computationally intensive, with a solution for a given
location and context taking hours to be found; with 1000 evolutions taking up
70Gb of data.

To automate this process, and carry its human-machine interaction biases,
we chose to use pix2pix ML - a conditional Generative Adversarial Network
(GANs) for image-to-image translation that learns how to transform one input
image into a corresponding output image following a given pattern (Isola, et
al., 2017). The strategy is to use our design and optimisation algorithm as the
pattern that pix2pix should learn. This is achieved by generating an image that
represents the input - the context of the building and the area it should occupy
on the plot, with one image of pixels being exported by each layer of voxels
(as to slice a 3D shape into a stack of layers). Then, the CA analyser runs and



finds the best, optimised solutions it can; from which, new images are
generated, representing each layer of the solution, with the position of the
resulting voxels marked as pixels.

These images, combined with the first set, form pairs in the dataset that is
used to train the pix2pix, one representing the input (context and shape
location) and the other representing the output (an aggregation of voxels).
The generative and discriminative models in GANs compete against each
other until equilibrium. Once the ML algorithm has been trained, it is
presented with a not-before-seen set of images of a context, and nearly
instantaneously produces the output set of images that can be used to
construct the 3D aggregation of the voxels, optimised for solar incidences in
that given location.

3.2. Preliminary Results

The result is a combinatorial strategy of rule/agent-based and ML intelligence.
As opposed to manually supervising the ML in learning, CA was employed as
an instructor of the learning process. This largely accelerated the optimisation
processes from hours and hundreds of Gb of data to just minutes with a
fully-trained ML. It may be used to automate the generation of many
aggregative possibilities to win over complex, dynamic solar conditions in the
built environment.

The CA-GA feedback is designed to automate a generative process that
takes objective (location, context and analysis) and subjective inputs
(designer’s parametric model). The challenge was computational costs from
3-dimensional data analysis. ML intelligence compresses high-dimensional
data into linear space that predicts the results of this process when shown a
new starting point. Normally, such compression results in the loss of integrity
in the geometry; nonetheless, voxels acting as proxies for complex
geometries, generating not forms but distribution protocols. For anyone who
seeks to automate optimization, while keeping the complexity of
intuition-based biases as part of the generative process, similar pipelines can
be customized for other problems (beyond solar) asked to a machine, without
directly programming how it should operate.

The figures below show the output aggregation strategies. The next step is
to explore evaluating metrics based on laws of entropy and power scaling to
rationalise and review output. From which, it must be discussed how the
mathematical logic of a unit form can be synthesised with CA logics to inform
one another, not simply as form information, but as mathematical data. One
instance is to translate form-finding models to become parametric by forcing
morph cages in grasshopper for the link with GA, so as to add virtually any
continuous shape instead of just parametric definitions.



Figure 2. ‘AI in+form’ workshop by @r.e.ar (2021). A test on aggregation of building
elements using rule/agent-based AI cellular automata (CA) and genetic algorithm (GA)

for optimization based on solar data.

Figure 3.‘AI in+form’ workshop by @r.e.ar (2021). Pix2pix ML algorithm trained on
aggregation output from CA-GA, a significant gain in computational time and power by

iteratively translating pixel-voxel.

Figure 4. ‘AI in+form’ workshop by @r.e.ar (2021). Each voxel data point acting as
geometry proxies, is replaced with continuous geometry of a solar design, which is

going through GA evolving into iterations based on solar data.

3.3. Design Output

As the primary theoretical framework, this pipeline has been structured from a
human interaction design process to a machine-supported design workflow,
understanding the process-specific inputs and outputs of each step and
transferring the correct data from one node to another.

In that sense, the pipeline allows design flexibility inside each node, being
quite adaptable according to the design problems to be addressed depending
on the study cases. This idea has been based on the principle coming from
the “Universal Constructor” developed by John and Julia Frazer (1990). Data
can be represented under this concept in any possible scale and shape inside
an experiment (in that case, a set of translucent boxes). In our approach,
digital voxels replace physical boxes as information containers that are getting
information from a more human-based step to the next one, in a gradually



more automated way of design. Still, the data can always be something
different, enriching the entire workflow, creating speculative variations over the
same original study case, as we can appreciate in the following examples.

Media 1.    ´AI in+form’ workshop by @r.e.ar - Tomasow R., Pillaca G., Qian Y. (2021).

TimeLapse video showing the pipeline, access:
https://www.instagram.com/tv/CNRNY42lYmM

https://www.instagram.com/tv/CNRNY42lYmM


Figure 5 & 6. ‘AI in+form’ workshop by @r.e.ar - Tomasow R., Pillaca G., Qian Y.
(2021). Two design variations coming from the same pipeline, solar dataset, and

trained AI algorithms.

In both examples (fig 5 and fig 6), our students faced the same problem as
initial input, including sharing precisely the same environmental data from a
coastal community located in Perú. But later, after running the first set of
design iterations, both teams finally delivered variations from each node to the
next one, creating entirely different results both in shape, density and
architectural programme at the end of the whole pipeline. Using the same
principles (as well as the CA and GA use), the translation of these set of
information was reinterpreted by both teams in different ways, due to the initial
conceptual reference and human-based exploration created a divergence
finally in the result, being one case based more on algae growing optimized
shape for solar radiation capture (fig 5). The other (fig 6) presented a more
structural and three based shape for the same principle but mixed with a
community football field as specific programmatic use, generating more rigid
design constraints that affected the whole process from human to machine
design workflow.



Figure 7. ‘AI in+form’ workshop by @r.e.ar - Tomasow R., Pillaca G., Qian Y. (2021).
Is it possible to have light harvesting structures that are transparent? A Luminescent

Solar Concentrator (LSC) can be fabricated as flexible thin films, light bounces up and
down within the material, transporting solar energy to the edge of a panel to the solar

cells, and freeing up the surface for transparency. This gives new opportunities of
turning large areas of buildings in cities as light harvesting surfaces, liberating solar

energy systems from being merely on the roof, but on building corners unused, against
reflective surfaces, and even indoors. Exploring the modest renewable energy

capacities within urban contexts.

:



4. Conclusion

This research tries to understand how socioeconomic and sociobiological
systems have been achieving their respective versions of scaling and
aggregation. Afterwards, it translates such principles into building design,
which defines architecture as a process of information feedback between
various forms of intelligence.

This research frames design as iterative decision-making processes that
feedback between input/output of human-machine, which demands a studying
of tasks within a design process and how they can be distributed between
designers/algorithms that are each better at different tasks. More specifically,
this research studies the practise of negotiation between designer intuition
and machine intelligence, informed by AI, which can take forms of
‘rule/agent-based’ (i.e. cellular automata CA, genetic algorithm GA) and
‘machine learning’ systems (i.e. pix2pix Generative Adversarial Networks
GANs). The former becomes an instructor in supervising the training of the
latter. Through both theoretical and technical means, this paper hopes to
prompt discussions around the relationship between nature/human/machine
and the future roles of architects as designers.

The proposed pipeline was tested preliminarily through a series of
workshop, in which, participant develops a critical understanding towards the
various computational intelligence, including cellular automata and machine
learning, and adopt our combinatorial production pipeline to the specificity of
their solar design, producing not final results but variational output.
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