

Purpose of This **Presentation**

Global net-zero targets need practical solutions beyond electrification.

Hydrogen and e-fuels offer a path forward for hard-to-abate sectors.

This presentation addresses

"How ready are we?"

"What's blocking us?"

"Where do we go next?"

Burning Questions in Front of Us

What are the technoeconomic realities of hydrogen and e-fuels?

Which parts of the value chain are mature, and which are not?

How do CapEx, OpEx, and LCOX compare?

What needs to change to enable commercial scalenbş

What Are Hydrogen and E-Fuels?

Green Hydrogen: H₂ produced via electrolysis using renewable energy.

E-Fuels: Synthetic fuels made by combining H₂ with captured CO₂ (e.g., e-methanol, eammonia, ekerosene).

Applications: Aviation, maritime, steel, refining, chemical feedstocks.

Technology & Commercial Maturity

Levelized Costs: Hydrogen & Fuels

LCOX is a metric used to evaluate the average cost per unit of a product (e.g., \$/MWh, \$/kg, \$/ton) over the **entire life cycle** of a project or asset,

CapEx Distribution

OpEx Distribution

6 Key Challenges to Viability

High Production Costs

- Electricity accounts for 60-75% of OpEx
- Electrolyzer accounts for 40-50% of CapEx
- Conversion plant CapEx leads to high LCOX

Low Technology Maturity (TRL < 9)

- •SOEC electrolysis still in development
- •CO2 capture for RFNBO is costly
- •E-kerosene, LOHCs are nascent

Infrastructure Gaps

- •Transport and Storage are costly
- Lack of pipelines
- •Insufficient ports/export hubs

Limited Market Demand & Offtake

- Unclear business models
- RFNBO certification barriers

Policy & Regulatory Misalignment

- •Lack of carbon pricing or mandates
- Subsidy gaps

Project Development & Risk Barriers

- Unproven business cases
- Weak front-end loading

Key Levers to ensure Techno-economic viability

CAPEX REDUCTION -ELECTROLYZER. BOP, **CONVERSION**

RENEWABLE POWER COST. UTILIZATION

NOVEL BUSINESS MODELS

LARGE SCALE **PROJECTS AND** INTEGRATION

INFRASTRUCTURE FOR TRANSPORT. STORAGE AND **END USE**

Specific Actions

Area	Levers
Technology	Scale-up electrolyzer manufacturing, advance SOEC, improve CO ₂ capture integration
\$ Cost	Lower renewable electricity costs, modular plant design, improve load factors
Project Delivery	Use Risk management, FEL, Value Engineering, and digitalization for cost certainty and risk reduction
Policy	Carbon pricing, fuel mandates, global RFNBO alignment (low influence)
Market	Anchor offtake agreements, hydrogen hubs, guaranteed minimum demand (low influence)

Conclusion - Low Hanging Fruits

- Negotiate Renewable PPAs for Electrolyzers
- **Modularize E-Fuel Plant Designs**
- Benchmark and Share LCOX Data Transparently
- Apply Value Engineering and Front-End Loading (FEL)
- **Retrofit Existing Infrastructure**

Conclusion-Stakeholder Actions

- **Accelerate Demonstration Projects**
- **Push for Policy Alignment and Carbon Pricing**
- Deploy Blended Finance and Risk-Sharing Models
- **Integrate Projects into Industrial Clusters**
- **Build Capacity and Standardization**

WE MAKE IT WORK RIGHT WORK RIGHT.

www.gate.energy

Reinforce (outside the slides)

- Electricity is the Dominant Cost Driver Focus on electricity price, load factor, and utilization to control LCOH/LCOX.
- TRL Gaps Exist in Conversion and End Use Investment needed to scale SOEC, methanation, e-kerosene, and downstream technologies.
- Techno-Economic Gaps Can Be Bridged With scale, integration, and policy support, e-fuel LCOX can drop by 40–60% in the next 5–7 years.
- Hydrogen Alone is Not the Goal The real value lies in integrating hydrogen with e-fuel conversion and decarbonized molecules.
- Cross-Sector Collaboration is Non-Negotiable Success depends on alignment between energy producers, OEMs, offtakers, policymakers, and investors.