

Digitalization, Al & Asset Integrity in Lithium Extraction Leveraging Oil & Gas Practices

D Raghu
Kaleidoscope Energy LLC
https://kaleidoscope.energy/

Agenda

- 1. Why Asset Integrity & Digitalization Matter
- 2. DLE vs. Evaporation Process and Risk Comparison
- 3. Oil & Gas Synergies
- 4. Leveraging Oil & Gas Practices in Lithium
- 5. Current Adoption Status
- 6. Conclusion & Takeaways

CAN WE MEET

Meeting demand for the high-quality lithium that will power the 350 million EVs expected to be sold globally by 2030 is set to be a challenge.

GLOBAL LCE® SUPPLY VS. DEMAND

A revolutionary new way of producing lithium called direct lithium extraction (DLE) could help meet this demand.

THE IMPACT OF DIRECT LITHIUM EXTRACTION

90% lithium recovery rate compared to just 30% using current lithium brine extraction methods.

1-2 day cycle process time rather than a processing time of up to 18 months

DLE facilitates production in otherwise unfeasible locations like California or Smackover, Arkansas

Source: EnergyX

Using pioneering DLE technology, EnergyX is on a mission to meet tomorrow's lithium demands and become a worldwide leader in the global transition to sustainable energy.

- ☆ Global lithium demand > 3 million tons/year by 2030
- ☆ Supply is projected to lag significantly
- ☼ DLE will be a major vector to address the shortfall
- ☼ DLE offers speed and sustainability but is technically demanding
- ☆ Asset integrity and digitalization are critical enablers for DLE scaling

2. Comparison of process and risk

Feature	Evaporation	DLE
Timeframe	12-18 months	Hours to days
Lithium Recovery	~40–50%	70–90%
Water Use	High	Low
Footprint	Large ponds	Compact facilities
Instrumentation	Minimal	High
Sustainability	Moderate	High potential

Process and Integrity Risks

- Evaporation: Land alteration, water loss, liner failures
- ☼ DLE: Corrosion, scaling, resin degradation, chemical leaks
- ☆ Complex fluids require rigorous Process Safety Management (PSM)

DLE vs Evaporation – Operational & Digital Complexity

- Evaporation ponds: Passive, low instrumentation, long cycle (12–18 months)
- DLE-Modular, continuous, and realtime sensitive process
- Requires advanced instrumentation, control, and remote diagnostics
- Strong case for Al and predictive digital technologies

KALEIDOSCOPE ENERGY SINCE 2022

DLE and Evaporation Maturity

DLE - PSM, Al and Operational Risks

SINCE 202

3. O&G and DLE Analogues

DLE and O&G Common Challenges

- ☆ Subsurface & fluid handling
- ☆ Chemicals and safety risks
- ☼ Need for Asset Management & Culture
- ☼ Need for Digitalization and monitoring-at scale
- ☆ High environmental and ESG stakes

DLE - PSM, Al and Operational Risks

SINCE 20

4. Leveraging Oil & Gas Expertise for DLE

- ☆ Integrity & Reliability
- ☼ Operational Technology
- ☆ Digitalization
- ☆ Cybersecurity
- **☆ ESG**

Application Areas

Operational Tech

- Digital twin
- •Flange management
- •Al-assisted Remaining Useful Life (RUL) estimation
- Natural Language Processing (NLP) to extract risk events from inspection reports

Integrity & Reliability

- •IOW, RBI
- •LOPA, barrier management
- Drones, robots
- Advanced sensing and monitoring
- •AI, LLM

ESG

- Safety cases
- ■Envt. Monitoring
- Real-time discharge monitoring
- •Al for lifecycle emissions estimation
- Sensor networks for monitoring

Cybersecurity

- Cyber-asset inventory and threat detection in OT networks
- Redundancy and failsafe systems in critical control loops

Digitalization

- Digital Twins of production facilities and pipelines
- •loT-enabled real-time condition monitoring
- •Integrated Operations Centers for remote diagnostics and control

Example use cases

Theme	Area	Challenge in Lithium	O&G Practice / Technology	Potential DLE Adaptation
ESG	Environmental Risk	Brine leakage, groundwater impact, land use	ESG risk quantification, containment integrity monitoring	Containment monitoring, brine reinjection safeguards
ESG	Standards & Compliance	Need for formalized risk and quality standards	API, ISO 55000, NACE codes, IEC 62443	Apply to brine piping, injection wells, cybersecurity
Integrity & Reliability	Well Integrity	Corrosion, scaling, reinjection stress	ISO 16530, API well integrity standards, well integrity logs, corrosion probes	Well casing diagnostics , pipeline sensors, corrosion in brine systems
Integrity & Reliability	Corrosive Process Fluids	Acid/base handling, brine scaling, H ₂ S	PSM, NACE corrosion control, material selection	Corrosion monitoring, material compatibility in acidic brines
Integrity & Reliability	Asset Lifecycle Management	From pilot to commercial scale	Reliability-centered maintenance, RBI, FMEA	Lifecycle-based maintenance plans for DLE components
Integrity & Reliability	Emergency Response	Acid spills, toxic gas release, pond failure	Fire and gas detection, ESD systems, ERP plans	Real-time toxic gas detection, automated response protocols
Integrity & Reliability	Predictive Maintenance	Downtime due to mechanical failures	Al for vibration, thermal, acoustic data analysis	Condition monitoring of pumps, columns, motors
Integrity & Reliability	Drones & Robotics	High-risk manual inspections	UAVs, robotic crawlers for tanks/pipelines	Pond inspection, tank surveillance, robotic inspection
Integrity & Reliability	Advanced Sensing	Real-time chemical/process monitoring	Fiber optics, analyzers, fugitive gas detectors	Real-time Li analyzers, WirelessHART, turbidity/scale detection
Operational Tech	Digital Operations	Distributed assets, scaling control, remote sites	Digital twins, remote monitoring, predictive analytics	DLE plant/process twins, ML models for scale prediction
Operational Tech	Digital Twins	Complex real-time process optimization	Reservoir and plant twins with soft sensors	DLE process twins for real-time dosing, flow, adsorption
Operational Tech	Remote Ops & SCADA	Remote operations and diagnostics	Centralized control rooms, automated sites	Integrated SCADA, remote control of wells/plants

Some low hanging fruit

Theme	O&G Practice / Technology	DLE Adaptation
ESG	ESG risk quantification, containment integrity monitoring	Containment monitoring, brine reinjection safeguards
Integrity & Reliability	ISO 16530, API well integrity standards, well integrity logs, corrosion probes	Well casing diagnostics, pipeline sensors, corrosion in brine systems
Integrity & Reliability	PSM, NACE corrosion control, material selection	Corrosion monitoring, material compatibility in acidic brines
Integrity & Reliability	Reliability-centered maintenance, RBI, FMEA	Lifecycle-based maintenance plans for DLE components
Integrity & Reliability	Fire and gas detection, ESD systems, ERP plans	Real-time toxic gas detection, automated response protocols
Operational Tech	Digital twins, remote monitoring, predictive analytics	DLE plant/process twins, ML models for scale prediction

5. Adoption Status

Adoption Status

Digital Domain	DLE – Already Implemented	Evaporation – Already Implemented
Asset Integrity	✓ Digital well diagnostics, corrosion monitoring on brine lines, digital asset registers	Limited – manual inspections, some corrosion protection on ponds and flowlines
Predictive Maintenance	✓ Used in SQM & Eramet DLE plants – Andritz Metris system, ML-based alerts for pumps/filters	Emerging – some pilot monitoring (e.g., pumps in processing plants), but not yet Al-driven
Drones & Robotics	UAVs used for inspection of wells, tanks, and leaks in Argentina and Chile DLE plants	✓ Widely used – especially for evaporation pond monitoring, 3D pond modeling, structural inspection
Digital Twins	SQM and Schlumberger: digital twins of DLE plants, brinefields, sorbent performance	Limited – mainly being piloted for plant-level simulation, not yet widespread
Advanced Sensing	WirelessHART, real-time analyzers for Li concentration, pH, flow, pressure in DLE units	Limited – mostly manual sampling; some conductivity, level sensors used in ponds
Remote Ops & SCADA	Present in new DLE plants (e.g., Eramet): centralized control, remote monitoring of wells/plants	A Basic SCADA present for flow control; few fully integrated remote operations
Standards & Compliance	O&G-derived standards applied: API for well integrity, NACE for corrosion, ISO for asset management	⚠ Some legacy evaporation operations still evolving compliance; digital standards adoption underway

6. Conclusion

Summary – 5 Key Takeaways KALEIDOSCOPE ENERGY

- ★ Asset integrity is foundational and digitalization is its enabler
- ☆ Predictive maintenance boosts uptime and safety
- ☼ Drones and robotics de-risk and automate inspection
- ☼ Digital twins transform decisionmaking from reactive to proactive
- ☼ O&G experience offers a shortcut to maturity for lithium operators

What is next?

- ☆ Pilot digital twin or predictive maintenance program
- ☆ Train workforce using oil & gas safety culture examples
- ☆ Create specific risk-based inspection RBI plans for DLE
- ☆ Collaborate with O&G tech partners to accelerate adoption