Maximizing Value in Energy Capital Projects The Critical Role of Materials Engineering

Damodaran Raghu Kaleidoscope Energy LLC

Value Maximization in Capital Projects

4/21/2025

KAI EIDOSCOPE ENER

AGENDA

- Introduction
- Project Lifecycle and Material Decision Points
- Role of Innovative Materials in Energy Projects
- Tools for Value Optimization
- Examples
- Closing and Key Takeaways
- **Q&A**

Key Challenges in the Capital Project Space

Geopolitical & Permitting Risks

Why do we do Project Challenges projects **Complexity of Engineering & Design** Technical **Energy Security & Supply** Technology Integration & Reliability **Economic Growth & Job** Scoping, Cost Overruns & Budget Creation Blowouts Economic Safety & Environment **Profitability & Investment** Commercial Returns **Transition to Sustainability** Organizational **Technological Innovation &** Advancement **Geopolitical & Strategic** Political/Regulatory Influence

Uncertain Commodity Prices Long-Term Contractual Uncertainty Project Financing & ROI Risks Workforce Shortages & Skills Stakeholder & Partner Misalignment Evolving Environmental

Material Degradation & Corrosion Technical Advanced Material Selection for Extreme High Cost of Advanced Materials Economic Supply Chain Disruptions for Critical Materials Long-Term Material Performance Uncertainty Commercial Material Qualification & Certification Complexity Limited Expertise in Advanced Materials Organizational

Cross-Disciplinary

Collaboration Gaps

on Certain Materials

Material Sourcing

Political/Regulatory

4/21/20

Environmental Restrictions

Geopolitical Risks in Raw

Materials Challenges

Value Maximization in Capital Projects

6

4/21/2025

How can we maximize project value? **KALEIDOSCOPE ENERGY** Value Engineering Technology Readiness & Innovation Front End Loading Maximize Project Value Scope Definition Risk Management Value Maximization in Capital Projects 4/21/2025 8

VALUE ENGINEERING WHAT, WHY, WHEN - VALUE PROPOSITION

Value engineering is a systematic method to improve the value of a project by optimizing its design, materials, and processes.

Cost Reduction Without Sacrificing Quality & Safety:

Value engineering focuses on identifying and eliminating unnecessary costs while maintaining or improving the quality and functionality of the

project_{Value Maximization} in Capital Projects

|--|--|

Function-Oriented Approach:

It emphasizes understanding the essential functions of a project and finding alternative solutions to achieve those functions more efficiently.

Interdisciplinary Collaboration:

The process involves a multidisciplinary team, including engineers, designers, and stakeholders, to generate innovative ideas and solutions.

⊖⇒⊳
□¢=Ŏ

Continuous Improvement:

Value engineering is not a onetime activity but an ongoing process that can be applied throughout the project lifecycle to enhance value at each stage.

9

4/21/2025

Risk Management:

By exploring different design and process options, value engineering helps identify and mitigate risks early, leading to more resilient and successful project outcomes.

Value Engineering-Benefits

Cost Efficiency - Rising Costs: Budget Adherence:

Innovation and Technology Integration - Rapid Technological Change: Optimized Design

Sustainability and Environmental Impact -Environmental Regulations, Minimized Footprint:

AL FIDOSCOPE

Risk Management -Complexity and Uncertainty, Resilience

Stakeholder Alignment and Satisfaction - Diverse Stakeholder Needs, Enhanced Communication

Lifecycle Cost Optimization -Long-Term Viability, Improved ROI

Adaptability to Future Changes - Scalability and Flexibility, Future-Proofing:

Value Maximization in Capital Projects

8. Competitive Advantage -Market Differentiation, Faster Time to Market

4/21/2025

Definition Scoping / Feasibility/ Engineering, FEED or Startup & Conceptual Preliminary **Procurement &** Basic Operations Phase Construction Design Engineering Engineering FEL-1 FEL-2 FEL-3 Select best Maintain budget Finalize Scope & Develop concepts identified project and schedule **Execution Plan** · Operation to Evaluate approaches Achieve **Client Goals** Capital achieve design alternatives Quantify mechanical appropriation performance · Quantify risks economics completion and Contracting Project definition handover Design basis Update FEL-2 Preliminary design Engineering • PFDs deliverables basis Procurement Training/startup Material balance P&IDs · Construction, or Block Flow Process data assistance Deliverables Diagrams Equipment Construction sheets Performance test specifications Management Equipment list Preliminary Plot plan 3D model Commissioning equipment layout Class 3 Class 2 Class 1 Class 5 Class 4 Cost Definitive Budget Control Order-of Magnitude Preliminary Estimate +30% / -20% +20% / -15% +15% / -10% +10% / - 5% +50% / - 30% Feasibility Feasibility Bankable Scoping study Bench-scale **Optimization** / **Test work** Pilot plant testing testing variability testing

KALEIDOSCOPE ENERG

The Project Stages & Front-End Loading (FEL)

Value N

KALEIDOSCOPE ENER

Role of a materials engineer

(When decisions are taken is as important as what and how they are taken)

	Concept	Select	Define	Execute	Run & Maintain
Project Objectives	 Identifying needs and objectives feasibility analysis market research concept development risk assessment resource planning stakeholder engagement preliminary project plan key decisions 	 Project approval project charter project team vendor selection detailed planning finalize project approach risk management procurement planning 	 Requirements gathering scope definition stakeholder analysis project objectives project Management plan risk identification constraints and assumptions Requirements communication plan baseline definition approval & sign off 	 Detailed design permitting and approvals supply chain management mobilization and site construction execution quality and technical assurance progress monitoring and reporting Cost management safety management Communication commissioning and handover Documentation look back 	
Materials & Metallurgical Engineer	 Materials feasibility Constructability Fabricability Cost 	 Materials related risk Adequate materials selection Can it be procured/built? 	 Finetune risk analysis Look at costs Look at tradeoffs Fit for purpose engineering Functional analysis Risk and materials 	 Quality assurance Technical assurance Materials & corrosion selection/control Design reviews/comments Inspection plans & implementation Troubleshooting Deviations 	 Materials selection Risk management Corrosion control Failure analysis Specialized testing Advisory Cost management

KAI EIDOSCOPE

Risk-is never Zero It's managed to be ALARP

- Risk includes TECOP
 - Tech/Econ/Commercial/Ops /Org/Political/Social reasons
- Materials and metallurgy is the foundation of any design
- What you do in a project has significant ramifications
- Typically, materials decisions account for 25-35% of the project cost

		Impact→				
		Negligible	Minor	Moderate	Significant	Severe
	Very Likely	Low Med	Medium	Med Hi	High	High
	Likely	Low	Low Med	Medium	Med Hi	High
kelihoo	Possible	Low	Low Med	Medium	Med Hi	Med Hi
	Unlikely	Low	Low Med	Low Med	Medium	Med Hi
	Very Unlikely	Low	Low	Low Med	Medium	Medium

Risk mitigation using material will include materials substitution, design barriers, coatings, inhibitors, novel inspection and monitoring and sensing...and analytics

4/21/2025

14

AL FIDOSCOPE

Technology Readiness

Technology Readiness Level Definition

9

6

3

ents

ment

- TRL 1 Basic Research: Initial scientific research has been conducted. Principles are qualitatively postulated and observed. Focus is on new discovery rather than applications.
- TRL 2 Applied Research: Initial practical applications are identified. Potential of material or process to solve a problem, satisfy a need, or find application is confirmed.
- TRL 3 Critical Function or Proof of Concept Established: Applied research advances and early stage development begins. Studies and laboratory measurements validate analytical predictions of separate elements of the technology.
- TRL 4 Lab Testing/Validation of Alpha Prototype Component/Process: Design, development and lab testing of components/processes. Results provide evidence that performance targets may be attainable based on projected or modeled systems.
- TRL 5 Laboratory Testing of Integrated/Semi-Integrated System: System Component and/or process validation is achieved in a relevant environment.
- TRL 6 Prototype System Verified: System/process prototype demonstration in an operational environment (beta prototype system level).
- TRL 7 Integrated Pilot System Demonstrated: System/process prototype demonstration in an operational environment (integrated pilot system level).
- TRL 8 System Incorporated in Commercial Design: Actual system/process completed and qualified through test and demonstration (pre-commercial demonstration).
- TRL 9 System Proven and Ready for Full Commercial Deployment: Actual system proven through successful operations in operating environment, and ready for full commercial deployment.

Technology Readiness Level (TRL) is a systematic scale from 1 to 9 used to assess the maturity of a technology, from initial concept (TRL 1) to full commercial deployment (TRL 9).

TRL, Value Engineering & Risk Management are aligned

Stage	TRL Role	Value Engineering Role	Risk Management Role
Concept & R&D (TRL 1-3)	Identify & evaluate emerging materials (e.g., perovskites for solar cells).	Evaluate cost vs. performance trade- offs for novel materials.	Identify early-stage risks (e.g., degradation, manufacturability).
Prototyping & Validation (TRL 4-6)	Test material performance under simulated conditions (e.g., corrosion, fatigue, thermal cycles).	Optimize material composition, coatings, and processing techniques.	Conduct failure mode analysis (FMEA) to predict risks.
Pre-Commercialization (TRL 7-8)	Conduct pilot-scale deployment to validate field performance.	Identify supply chain bottlenecks and cost-reduction opportunities.	Implement safety & regulatory compliance measures.
Commercialization & Scaling (TRL 9)	Full-scale deployment of optimized materials.	Ensure cost-efficient procurement & manufacturing.	Implement real-time monitoring & predictive maintenance.

Materials Strategies to Maximize Project Value

Category	Strategy		
Maximizing Value	Lifecycle Cost Analysis (NPV)		
	FFP Performance-Based Selection		
	Multi-Functional Materials		
	Supply Chain Optimization		
	Sustainability & Circular Economy		
Reducing Cost	Material Substitution		
	Process Optimization		
	Lightweighting		
	Design for Manufacturing (DFM)		
	Local Sourcing		
	Waste Reduction		
Maximizing Functionality	Material-Performance Matching		
	Advanced Materials Integration		
	Chemical, Coatings & Surface Treatments		
	Customization & Hybrid Materials		
	Design and Structural Optimization		
Risk Management	Failure Mode & Effects Analysis (FMEA)		
	Redundancy & Safety Factors		
	Monitoring, Sensing, Material Testing & Validation		
	Supplier & Quality Control		
alue Maximization in Capital Projects	Environmental & Regulatory Compliance		
	Scenario Analysis & Contingency Planning		

How does materials engineering connect with Value Creation

					KALEIDUGGOF E ENERG	
Application		Maximizing Value	Reducing Cost	Maximizing Functionality	Risk Management	
	Wind Turbines	- Use composite materials (carbon fiber, fiberglass) for blades to enhance efficiency and durability.	- Replace expensive carbon fiber with glass fiber composites where feasible.	- Use advanced coatings for erosion and UV protection.	- Perform fatigue and failure analysis for extreme wind conditions.	
		- Use recyclable thermoplastic composites for sustainability.	- Optimize blade aerodynamics to reduce material usage.	- Employ smart sensors for real- time structural health monitoring.	- Develop circular economy strategies for blade disposal.	
	Offshore & Onshore Oil &	- Use high-strength, corrosion- resistant alloys (e.g., duplex stainless steel, Inconel) for critical pipelines.	- Use polyethylene-lined pipes to reduce corrosion-related expenses.	- Apply coatings and cathodic protection to extend pipeline life.	- Conduct real-time corrosion monitoring and inline inspections.	
	Gas Pipelines	- Implement smart pigging technology for predictive maintenance.	- Optimize steel grades to balance cost and durability.	- Use composite repair wraps to reinforce aging pipelines.	- Ensure compliance with API 5L, NACE MR0175.	
	Subsea Oil & Gas	- Use titanium and super-duplex stainless steel for deep-sea applications.	- Utilize non-metallic flexible risers instead of rigid steel.	- Deploy autonomous robotic inspection for subsea infrastructure.	- Perform stress and fatigue analysis for deep-sea environments.	
	Equipment	 Implement cladding techniques to enhance corrosion resistance. 	- Replace some metal parts with high-performance polymers.	- Use high-pressure-resistant elastomers for better performance.	- Use real-time leak detection sensors.	
	Liquefied Natural Gas (LNG) Storage & Transport	- Use cryogenic materials (9% nickel steel, aluminum, or stainless steel) for LNG tanks.	- Develop new insulation materials (aerogels) to reduce boil-off gas losses.	- Implement vacuum-insulated pipelines to minimize heat transfer.	- Conduct thermal stress analysis to prevent failure in extreme temperatures.	
	Hydrogen Production	- Use proton exchange membrane (PEM) electrolyzers for high efficiency.	- Develop nickel-based catalysts as an alternative to platinum- group metals.	- Use ionomer membranes with improved proton conductivity for better efficiency.	- Test for hydrogen embrittlement resistance in materials.	
	Hydrogen)	- Implement high-performance iridium-platinum catalysts.	 Use low-cost stainless steel instead of titanium for balance- of-plant components. 	- Implement ceramic-coated electrodes for durability.	- Ensure compliance with ISO 22734 for electrolyzers.	
	Hydrogen Storage &	- Use lightweight composite tanks to improve storage efficiency.	 Replace expensive carbon-fiber tanks with aluminum-lined composites. 	- Use high-strength steel alloys for pipelines.	- Perform fracture mechanics analysis to prevent hydrogen embrittlement.	
Value Maximization in Capital Projects	Transport	- Implement metal-organic frameworks (MOFs) for better hydrogen adsorption.	- Develop membrane-based hydrogen separation to reduce purification costs.	- Implement solid-state hydrogen storage for enhanced safety.	- Use real-time leak detection systems.	

Materials Engineering in Projects-Value KALEIDOSCOPE ENER Creation CAPEX and NPV savings from 2013-2019 with many NPVs defined in 2015 \$900MM Enabling Cost Saving SURF Technology CAPEX S200MM Improved Corrosion Modeling & Prediction Use of Carbon Steel Flowlines, Risers, NPV STOOMM Enabling Cost Saving Wells Technology Development of HPHT Corrosion Inhibitor and Hull Piping Design Interface \$335MM FFP Subsea CAPEX S60MM Materials - Alloy & Non-metallics Qual. HT Thermal NPV \$275MM HPHT 400°F, 15 ksi Tree Development ASME Sec VIII Div 3 Design + Insulation Non-metallics 13P - Independent 3rd Party Verification Carbon Steel Subsea Tree (15ksi/400°F) \$500MM+ lowlines, Risers NPV SSOOMM and Hull Piping Novel HPHT Insulation Systems for HPHT 400°F Insulation for \$1,000MM Flowlines, Risers, and Hull Piping Hardware, Flowlines, Risers, Hull Piping r<u>-1 nê 1</u> FFP Qualification of Equipment Insulation \$45MM Wellhead CAPEX \$45MM Qualification Mitigation of Cracking Risks by FFP Tests Producer Integrity in HPHT Conditions Seawater Sour HT Sour Casing & Connection Design Injector **Tubing FFP** Large Forging Wellhead Qualification Materials Qualification Wells Equipment Non-metallics Qual. + \$70MM Sour Casing CAPEX STOMM Alloy Selection for Oxygen Pitting Service FFP Wells Design Water Injector Integrity (HPHT) Non-metallics Galvanic Corrosion - FFP Coatings +

Key Technologies Developed & Deployed

- □ Novel, corrosion prediction models precursor to ML
- Qualification of large forgings using novel fracture mechanics design and NDE techniques (FFS)
- □ Fracture mechanics design for sub-sea equipment
- High temperature corrosion inhibitors

Value Maxir

- □ High temperature flexible submerged insulation
- Elastomers and seals resistant to high temperature and H2S

T-Engineer Concept

KALEIDOSCOPE ENERGY

Key Takeaways

Understanding Value Maximization in Capital Projects

- Importance of optimizing project design, materials, and processes.
- Effective material selection significantly impacts project costs (25-35%).
- Challenges in Renewable Energy Projects
 - Technical, economic, and operational risks (TECOP framework).
 - High capital expenditure (CapEx) and material cost contributions.
- Role of Materials Engineering in Project Success
 - Early-stage material decisions drive innovation and cost efficiency.
 - Material substitution, coatings, inhibitors, and advanced sensing technologies for risk mitigation.

- Value Engineering for Project Optimization
 - Systematic approach to improving value throughout project stages.
 - Value engineering must be integrated early—delayed decisions increase costs.
- Technology Readiness & Risk Management
 - Technology Readiness Level (TRL) ensures structured innovation deployment.
 - Alignment of TRL with value engineering and risk management.
- Strategic Material Decisions for Maximizing Value
 - Innovative materials enhance project durability and reduce failure risks.
 - Examples include corrosion prediction models, novel fracture mechanics, and high-temperature resistant materials.
- Digitalization & Emerging Energy Technologies

Driving Transformative Change in the Energy Sector Hydrogen, CCUS, e-Fuels, e-NH3, Renewables Damodaran Raghu (Raghu) Managing Partner draghu@kaleidoscope.energy +1.832.408.1389

https://kaleidoscope.energy/

SCAN ME

Hydrogen, CCUS, e-Fuels, e-NH3, Renewables

Value Engineering Owners Engineering Technical Assurance Lifecycle Risk Management Digitalization

4/21/2025

23